skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Research and Development of a Low Cost Solar Collector

Abstract

This is a Final Technical Report on the Research and Development completed towards the development of a Low Cost Solar Collector conducted under the DOE cost-sharing award EE-0003591. The objective of this project was to develop a new class of solar concentrators with geometries and manufacturability that could significantly reduce the fully installed cost of the solar collector field for concentrated solar thermal power plants. The goal of the project was to achieve an aggressive cost target of $170/m2, a reduction of up to 50% in the total installed cost of a solar collector field as measured against the current industry benchmark of a conventional parabolic trough. The project plan, and the detailed activities conducted under the scope of the DOE Award project addressed all major drivers that affect solar collector costs. In addition to costs, the study also focused on evaluating technical performance of new collector architectures and compared them to the performance of the industry benchmark parabolic trough. The most notable accomplishment of this DOE award was the delivery of a full-scale integrated design, manufacturing and field installation solution for a new class of solar collector architecture which has been classified as the Bi-Planar Fresnel Collector (BPFC) andmore » may be considered as a viable alternative to the conventional parabolic trough, as well as the conventional Fresnel collectors. This was in part accomplished through the design and development, all the way through fabrication and test validation of a new class of Linear Planar Fresnel Collector architecture. This architecture offers a number of key differentiating features which include a planar light-weight frame geometry with small mass-manufacturable elements utilizing flat mirror sections. The designs shows significant promise in reducing the material costs, fabrication costs, shipping costs, and on-site field installation costs compared to the benchmark parabolic trough, as well as the conventional Fresnel collector. The noteworthy design features of the BPFC architecture include the use of relatively cheaper flat mirrors and a design which allows the mirror support beam sections to act as load-bearing structural elements resulting in more than a 36% reduction in the overall structural weight compared to an optimized parabolic trough. Also, it was shown that the utilization of small mass-produced elements significantly lowers mass-production and logistics costs that can more quickly deliver economies of scale, even for smaller installations while also reducing shipping and installation costs. Moreover, unlike the traditional Fresnel trough the BPFC architecture does not require complex articulating drive mechanisms but instead utilizes a standard parabolic trough hydraulic drive mechanism. In addition to the development of the Bi-Planar Fresnel Collector, an optimized conventional space-frame type parabolic trough was also designed, built, analyzed and field-tested during the first phase of this award. The design of the conventional space-frame parabolic collector was refined with extensive FEA and CFD analysis to reduce material costs and re-designed for simpler fabrication and more accurate lower-cost field assembly. This optimized parabolic trough represented an improvement over the state-of-the art of the traditional parabolic trough architecture and also served as a more rigorous and less subjective benchmark that was used for comparison of new candidate design architectures. The results of the expanded 1st phase of the DOE award project showed that both the Optimized Parabolic Trough and the new Bi-Planar Fresnel Collector design concepts failed to meet the primary objectives for the project of achieving a 50% cost reduction from the industry reference total installed cost of $350/m2. Results showed that the BPFC came in at projected total installed cost of $237/m2 representing a 32% savings compared to the industry benchmark conventional parabolic trough. And the cost reduction obtained by the Optimized Parabolic Trough compared to the industry benchmark reference was approximately 16.5% against the industry benchmark. The new BPFC design showed a weight savings of almost 36% compared to the optimized parabolic trough and a 50% reduction in field assembly labor and a 13% reduction in shipping volume. The BPFC design showed only a marginal improvement of 16% over the fully projected installed cost of the optimized parabolic trough benchmark developed as Concept One. During the course of the investigation numerous sensitivity analyses and other analytical studies were conducted to assess potential improvement opportunities, and further optimizations that could lead to cost reductions and performance improvements. Factors that could have a significant impact on high-volume costs were related to production and further improvements in design for manufacturability, automation, assembly jigs, and fixtures, and robotic welding etc. The wind modeling analysis showed that the Fresnel design concept did not reduce the wind load in a significant manner. The stress analysis showed that the design concept with almost a 36% lower weight than the parabolic trough and it was strong enough to withstand the expected wind loads and maintain targeting accuracy. The Initial on-sun optical testing showed that the Fresnel Trough was capable of concentrating sunlight effectively to the desired target and yielding an optical efficiency slightly lower than a parabolic trough.« less

Authors:
; ;
Publication Date:
Research Org.:
Suntrough Energy Inc.
Sponsoring Org.:
USDOE
OSTI Identifier:
1069235
Report Number(s):
DOE/EE0003591
DOE Contract Number:
EE0003591
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; CSP, Solar Thermal, Solar Parabolic Trough Collector, Bi-Planar Fresnel Collector, Articulating Linear Fresnel Collector

Citation Formats

Ansari, Asif, Philip, Lee, and Thouppuarachchi, Chirath. Research and Development of a Low Cost Solar Collector. United States: N. p., 2012. Web. doi:10.2172/1069235.
Ansari, Asif, Philip, Lee, & Thouppuarachchi, Chirath. Research and Development of a Low Cost Solar Collector. United States. doi:10.2172/1069235.
Ansari, Asif, Philip, Lee, and Thouppuarachchi, Chirath. Wed . "Research and Development of a Low Cost Solar Collector". United States. doi:10.2172/1069235. https://www.osti.gov/servlets/purl/1069235.
@article{osti_1069235,
title = {Research and Development of a Low Cost Solar Collector},
author = {Ansari, Asif and Philip, Lee and Thouppuarachchi, Chirath},
abstractNote = {This is a Final Technical Report on the Research and Development completed towards the development of a Low Cost Solar Collector conducted under the DOE cost-sharing award EE-0003591. The objective of this project was to develop a new class of solar concentrators with geometries and manufacturability that could significantly reduce the fully installed cost of the solar collector field for concentrated solar thermal power plants. The goal of the project was to achieve an aggressive cost target of $170/m2, a reduction of up to 50% in the total installed cost of a solar collector field as measured against the current industry benchmark of a conventional parabolic trough. The project plan, and the detailed activities conducted under the scope of the DOE Award project addressed all major drivers that affect solar collector costs. In addition to costs, the study also focused on evaluating technical performance of new collector architectures and compared them to the performance of the industry benchmark parabolic trough. The most notable accomplishment of this DOE award was the delivery of a full-scale integrated design, manufacturing and field installation solution for a new class of solar collector architecture which has been classified as the Bi-Planar Fresnel Collector (BPFC) and may be considered as a viable alternative to the conventional parabolic trough, as well as the conventional Fresnel collectors. This was in part accomplished through the design and development, all the way through fabrication and test validation of a new class of Linear Planar Fresnel Collector architecture. This architecture offers a number of key differentiating features which include a planar light-weight frame geometry with small mass-manufacturable elements utilizing flat mirror sections. The designs shows significant promise in reducing the material costs, fabrication costs, shipping costs, and on-site field installation costs compared to the benchmark parabolic trough, as well as the conventional Fresnel collector. The noteworthy design features of the BPFC architecture include the use of relatively cheaper flat mirrors and a design which allows the mirror support beam sections to act as load-bearing structural elements resulting in more than a 36% reduction in the overall structural weight compared to an optimized parabolic trough. Also, it was shown that the utilization of small mass-produced elements significantly lowers mass-production and logistics costs that can more quickly deliver economies of scale, even for smaller installations while also reducing shipping and installation costs. Moreover, unlike the traditional Fresnel trough the BPFC architecture does not require complex articulating drive mechanisms but instead utilizes a standard parabolic trough hydraulic drive mechanism. In addition to the development of the Bi-Planar Fresnel Collector, an optimized conventional space-frame type parabolic trough was also designed, built, analyzed and field-tested during the first phase of this award. The design of the conventional space-frame parabolic collector was refined with extensive FEA and CFD analysis to reduce material costs and re-designed for simpler fabrication and more accurate lower-cost field assembly. This optimized parabolic trough represented an improvement over the state-of-the art of the traditional parabolic trough architecture and also served as a more rigorous and less subjective benchmark that was used for comparison of new candidate design architectures. The results of the expanded 1st phase of the DOE award project showed that both the Optimized Parabolic Trough and the new Bi-Planar Fresnel Collector design concepts failed to meet the primary objectives for the project of achieving a 50% cost reduction from the industry reference total installed cost of $350/m2. Results showed that the BPFC came in at projected total installed cost of $237/m2 representing a 32% savings compared to the industry benchmark conventional parabolic trough. And the cost reduction obtained by the Optimized Parabolic Trough compared to the industry benchmark reference was approximately 16.5% against the industry benchmark. The new BPFC design showed a weight savings of almost 36% compared to the optimized parabolic trough and a 50% reduction in field assembly labor and a 13% reduction in shipping volume. The BPFC design showed only a marginal improvement of 16% over the fully projected installed cost of the optimized parabolic trough benchmark developed as Concept One. During the course of the investigation numerous sensitivity analyses and other analytical studies were conducted to assess potential improvement opportunities, and further optimizations that could lead to cost reductions and performance improvements. Factors that could have a significant impact on high-volume costs were related to production and further improvements in design for manufacturability, automation, assembly jigs, and fixtures, and robotic welding etc. The wind modeling analysis showed that the Fresnel design concept did not reduce the wind load in a significant manner. The stress analysis showed that the design concept with almost a 36% lower weight than the parabolic trough and it was strong enough to withstand the expected wind loads and maintain targeting accuracy. The Initial on-sun optical testing showed that the Fresnel Trough was capable of concentrating sunlight effectively to the desired target and yielding an optical efficiency slightly lower than a parabolic trough.},
doi = {10.2172/1069235},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Aug 01 00:00:00 EDT 2012},
month = {Wed Aug 01 00:00:00 EDT 2012}
}

Technical Report:

Save / Share:
  • The research efforts during these first 6 months of Phase II have been directed toward (1) evaluating the long-term durability of various plastic materials and solar collector designs, (2) obtaining sufficient outdoor performance data to design a full-scale demonstration of a black-liquid solar collector for a commercial application, (3) teaming with a company willing to commercialize black liquid plastic collectors, and (4) incorporating improved black liquids with the identified plastic collector designs. Besides conducting indoor weathering tests of various plastic materials, two outdoor automated test facilities have been built. One unit has been in use for about 2 winter monthsmore » at Battelle in Columbus, Ohio, and the other unit is ready for testing in Phoenix, Arizona, by Ramada Energy Systems, Inc., a collector manufacturing company. Since Ramada Energy Systems has been working with extruded polycarbonate panels, Battelle has been working to date with extruded acrylic panel designs. Other potential plastics for solar collectors will be evaluated later in this program.« less
  • Battelle's Columbus Laboratories (BCL) has developed an efficient, low-cost, low-temperature, nonconcentrating, liquid-heating solar collector suitable for use as a thermal energy source for heat pumps or other heating applications. The collector incorporates a black liquid heat transfer medium permitting solar radiation to be absorbed directly by the liquid. Based on detailed measurements of the spectral absorption properties on many black liquids, and on the results of computer analysis of collector performance, it has been shown that the black liquid collector concept has the potential of significantly improved performance compared with an unglazed (i.e., swimming pool type) black-absorber collector of comparablemore » cost.On the other hand, it has the potential of significant cost savings compared with the single-glazed collector of comparable performance. Experimental data obtained on two black liquid collectors constructed during this project closely match the predicted curves obtained from a theoretical computer analysis. Results of the systems analysis studies have shown that the black liquid collector, when used as a heat source for a solar-assisted heat pump, has comparable performance to that of a single-glazed conventional collector but at considerably lower cost. Another important result is that currently available heat pump systems are not ideally matched or compatible with a solar-assisted system. A solar-assisted system will require design of heat pumps which can take advantage of the higher system coefficient of performance (COP) possible with a heat source at elevated temperatures.« less
  • The goal of the contract was to develop and produce a Low Cost Domestic Water Heating System, one that could be sold at a retail price of $500. The primary effort was to reduce solar-collector costs and, more specifically, the collector absorber-plate costs. Plastic-adhesive research, under this contract, resulted in the extensive use of silicone adhesives in a high-performance solar collector which was also durable, reliable, and easy to manufacture at a low cost. High thermal performance resulted from development of a silicone-based conductive bond. The new collector has full-pressure capability (150psi Test, 100psi Working), and can be manufactured inmore » quantity at a materials cost of $55 and a labor cost of $3.35. The report includes detailed design descriptions, drawings, and photographs of four different low-cost solar collectors designed and built under the contract. Also, material listings and a step-by-step procedure for manufacturing the selected collector are included. NMSEI Performance Data for the new collector are compared to the certification data of the model SL-100 collector previously manufactured by American Solar Products.« less
  • The development and testing of a prototype solar collector with several unique features is described. The collector consists of a one-piece plastic envelope with an aluminized lower section that serves as the reflector. A light-weight frame engineered to provide minimum deflections holds the envelope in a unique shape. The absorber consists of several heat pipes in a cluster that is specially designed to achieve maximum thermal absorption with a reduction in effective emittance. A description is given of how the size, shape, and position of the absorber and the collector aperture were designed. The low concentration ratio allows the collectormore » to work well during cloudy days. The heat transfer rates for long heat pipes were determined in laboratory tests and serve as guides for further development of different sized collectors. Special material compatibility considerations are noted. The collector has the following design features: lightweight, low-cost materials, high system efficin-uniformly /sup 14/C-labelled substrates. The distribution of the radioactivity over carbon dioxide and methane allowed conclusions to be drawn about the pathways involved. Effects of specific inhibitors in degradation studies can similarly be studied by radio gas chromatography.« less
  • The goal of this contract was to develop and produce a ''Low Cost Domestic Water Heating System,'' one that could be sold at a retail price of $500. This goal has been achieved. The primary effort was to reduce solar collector costs and, more specifically, the collector absorber plate costs. Plastic adhesive research, under this contract, resulted in the extensive use of silicone adhesives in a high performance solar collector which was also durable, reliable and easy to manufacture at a low cost. High thermal performance resulted from development of a silicone based conductive bond. The new collector has fullmore » pressure capability (150 psi Test, 100 psi Working), and can be manufactured in quantity at a materials cost of $55 and a labor cost of number3.35. The report includes detailed design descriptions, drawings, and photographs, of four different low cost solar collectros that were designed and built under this contract. Also, material listings and a step-by-step procedure for manufacturing the selected collector are included. NMSEI Performance Data for this new collector are compared to the certification data of the model SL-100 collector previously manufactured by American Solar Products.« less