Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Radiolysis Process Model

Technical Report ·
DOI:https://doi.org/10.2172/1069211· OSTI ID:1069211
Assessing the performance of spent (used) nuclear fuel in geological repository requires quantification of time-dependent phenomena that may influence its behavior on a time-scale up to millions of years. A high-level waste repository environment will be a dynamic redox system because of the time-dependent generation of radiolytic oxidants and reductants and the corrosion of Fe-bearing canister materials. One major difference between used fuel and natural analogues, including unirradiated UO2, is the intense radiolytic field. The radiation emitted by used fuel can produce radiolysis products in the presence of water vapor or a thin-film of water (including OH• and H• radicals, O2-, eaq, H2O2, H2, and O2) that may increase the waste form degradation rate and change radionuclide behavior. H2O2 is the dominant oxidant for spent nuclear fuel in an O2 depleted water environment, the most sensitive parameters have been identified with respect to predictions of a radiolysis model under typical conditions. As compared with the full model with about 100 reactions it was found that only 30-40 of the reactions are required to determine [H2O2] to one part in 10–5 and to preserve most of the predictions for major species. This allows a systematic approach for model simplification and offers guidance in designing experiments for validation.
Research Organization:
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1069211
Report Number(s):
PNNL--21554; AF5865010
Country of Publication:
United States
Language:
English

Similar Records

Experimental Results for SimFuels
Technical Report · Wed Aug 22 00:00:00 EDT 2012 · OSTI ID:1069210

Sensitivity of UO2 Stability in a Reducing Environment on Radiolysis Model Parameters
Conference · Sat Sep 01 00:00:00 EDT 2012 · OSTI ID:1078019

Study of the Consequences of Secondary Water Radiolysis Surrounding a Defective Canister
Journal Article · Sun Jun 15 00:00:00 EDT 2003 · Nuclear Technology · OSTI ID:20826860