skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: On-Line Monitoring for Control and Safeguarding of Radiochemical Streams at Spent Fuel Reprocessing Plant

Conference ·
OSTI ID:1057848

There is a renewed interest worldwide to promote the use of nuclear power and close the nuclear fuel cycle. The long term successful use of nuclear power is critically dependent upon adequate and safe processing and disposition of the spent nuclear fuel Liquid-liquid extraction is a separation technique commonly employed for the processing of the dissolved spent nuclear fuel. Our approach is based on prerequisite that real time monitoring of the solvent extraction flowsheets provides unique capability to quickly detect unwanted manipulations with fissile isotopes present in the radiochemical streams during reprocessing activities. The instrumentation used to monitor these processes must be robust, require little or no maintenance, and be able to withstand harsh environments such as high radiation fields and aggressive chemical matrices. In addition, the ability for continuous on-line monitoring allows for numerous benefits. Our team experimentally assessed the potential of Raman and vis-NIR spectrophotometric techniques for on-line real-time monitoring of the U(VI)/nitrate ion/nitric acid and Pu(IV)/Np(V)/Nd(III), respectively, in solutions relevant to spent fuel reprocessing. Both techniques demonstrated robust performance in the repetitive batch measurements of each analyte in a wide concentration range using simulant and commercial dissolved spent fuel solutions. Static spectroscopic measurements served as training sets for the multivariate data analysis to obtain partial least squares predictive models, which were validated using on-line centrifugal contactor extraction tests. The corresponding spectrometers used under the laboratory conditions are easily convertible to the process-friendly configurations allowing remote measurements under the flow conditions. A fiber optic Raman probe allows monitoring of the high concentration species encountered in both aqueous and organic phases within the PUREX suite of flowsheets, including metal oxide ions, such as uranyl, components of the organic solvent, inorganic oxo-anions, and water. The actinides and lanthanides are monitored remotely by UV-vis-NIR spectroscopy in aqueous and organic phases. This paper summarizes our methodology and shows results of specific examples.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1057848
Report Number(s):
PNNL-SA-80524; AF5805000
Resource Relation:
Conference: Proceedings of the 52nd Annual Meeting of the Institute of Nuclear Materials Management, July 17-21, 2011, Palm Desert, California, 3:2492-2501
Country of Publication:
United States
Language:
English