skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reactivity Initiated Accident Test Series RIA Scoping Test Quick Look Report

Abstract

The Reactivity Initiated Accident Scoping Test (RIA-ST) was successfully completed August 30, 1978. The test was introductory to the RIA Series 1 tests and was designed to investigate and resolve several anticipated problem areas prior to performance of the first test of the series, Test RIA 1-1. The RIA Scoping Test, as performed, consisted of four separate single-rod experiment phases. The first three phases were performed with shrouded fuel rods of 5.8 wt.% enrichment. They were subjected to power bursts resulting in total fuel surface energies ranging from 205 to 261 cal/q at the axial peak elevation. The fourth phase consisted of a 20 wt.% enriched, shrouded fuel rod which was subjected to a power hurst that deposited a total radially averaged energy of 527 cal/g. The primary objectives of the Scoping Test were defined as follows: (1) Determine the applicability of extrapolating low-power steady state calorimetric measurements and self-powered neutron detector (SPND) output to determine fuel rod energy depositions during a power burst. (2) Determine the enerqy deposition failure threshold for unirradiated fuel rods at BWR hot-startup coolant conditions. (3) Determine the magnitudes of oossible pressure pulses resulting from rod failure. (4) Determine the sensitivity of the test instrumentationmore » to high transient radiation exposures. In general, the energy deposition values for the Scoping Test derived from the SPND output were 25% higher than those obtained from the core ion chamber data. Determining which values are correct will require radiochemical analysis of the fuel rods which will take several months. At present, it apoears that the SPND derived energies are in error because of excellent agreement between the calculated and measured power calibration results and the agreement between the predicted failure threshold and that seen using the core ion chamber derived energies. Meeting the second objective was accomplished during the first three test phases by subjecting the fuel rods to energy depositions which bracketed the failure threshold. The failure threshold in terms of total pellet surface energy at the axial flux peak was found to be between 218 cal/g where no rod failure occurred and 256 cal/g where · rod failure did occur. The experiment predictions indicated that the failure threshold would be 262 cal/g at the pellet surface. Only the fourth experiment phase (527 cal/g) resulted in a pressure pulse upon rod failure. The best indication of source pressure was the reading from a 69 MPa EG&G pressure transducer at the flow shroud inlet. This pressure transducer indicated a pressure pulse upon rod failure of 28.2 MPa with a rise time of 1.6 ms. The source pressure was attenuated considerably outside the shroud region as indicated by pressure transducers in the upper plenum of the in-pile tube and in the flow bypass region. The maximum pressure indicated outside the flow shroud was 2.1 MPa. In general, instrumentation sensitivity to radiation was minimal. The most significant instrumentation problem during the power bursts was a false flowrate indication by the flow turbines. This problem is being examined. The Kaman and Bell & Howell pressure transducers showed the least sensitivity to radiation of the pressure measurement devices. The EG&G transducers were most sensitive. The locked linear variable differential transformer (LVDT) gave no indication of radiation sensitivity as its response during the burst was a straight line. The strain gages were very sensitive to radiation, indicating a strain increase of 70% with the second burst of RIA-ST-1. The Type S thermocouple did not exhibit significant radiation sensitivity. In addition, the RIA Scoping Test has provided data on the consequences of fuel rod failure during a RIA event at BWR hot startup conditions. Posttest examination of the fuel rods from the first two phases of the test revealed large quantities of UO{sub 2} fuel missing from the cladding. Fuel rod failures for energy depositions near the failure threshold in previous closed capsule tests without forced coolant flow resulted in only a slight amount of fuel loss.« less

Authors:
; ; ; ; ;
Publication Date:
Research Org.:
Idaho National Laboratory (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1056640
Report Number(s):
TFBP-TR-289
DOE Contract Number:  
DE-AC07-05ID14517
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS

Citation Formats

Martinson, Z. R., Semken, R. S., Inabe, T., Smith, R. H., Cook, T. F., and Appelhans, A. D. Reactivity Initiated Accident Test Series RIA Scoping Test Quick Look Report. United States: N. p., 1978. Web. doi:10.2172/1056640.
Martinson, Z. R., Semken, R. S., Inabe, T., Smith, R. H., Cook, T. F., & Appelhans, A. D. Reactivity Initiated Accident Test Series RIA Scoping Test Quick Look Report. United States. https://doi.org/10.2172/1056640
Martinson, Z. R., Semken, R. S., Inabe, T., Smith, R. H., Cook, T. F., and Appelhans, A. D. Fri . "Reactivity Initiated Accident Test Series RIA Scoping Test Quick Look Report". United States. https://doi.org/10.2172/1056640. https://www.osti.gov/servlets/purl/1056640.
@article{osti_1056640,
title = {Reactivity Initiated Accident Test Series RIA Scoping Test Quick Look Report},
author = {Martinson, Z. R. and Semken, R. S. and Inabe, T. and Smith, R. H. and Cook, T. F. and Appelhans, A. D.},
abstractNote = {The Reactivity Initiated Accident Scoping Test (RIA-ST) was successfully completed August 30, 1978. The test was introductory to the RIA Series 1 tests and was designed to investigate and resolve several anticipated problem areas prior to performance of the first test of the series, Test RIA 1-1. The RIA Scoping Test, as performed, consisted of four separate single-rod experiment phases. The first three phases were performed with shrouded fuel rods of 5.8 wt.% enrichment. They were subjected to power bursts resulting in total fuel surface energies ranging from 205 to 261 cal/q at the axial peak elevation. The fourth phase consisted of a 20 wt.% enriched, shrouded fuel rod which was subjected to a power hurst that deposited a total radially averaged energy of 527 cal/g. The primary objectives of the Scoping Test were defined as follows: (1) Determine the applicability of extrapolating low-power steady state calorimetric measurements and self-powered neutron detector (SPND) output to determine fuel rod energy depositions during a power burst. (2) Determine the enerqy deposition failure threshold for unirradiated fuel rods at BWR hot-startup coolant conditions. (3) Determine the magnitudes of oossible pressure pulses resulting from rod failure. (4) Determine the sensitivity of the test instrumentation to high transient radiation exposures. In general, the energy deposition values for the Scoping Test derived from the SPND output were 25% higher than those obtained from the core ion chamber data. Determining which values are correct will require radiochemical analysis of the fuel rods which will take several months. At present, it apoears that the SPND derived energies are in error because of excellent agreement between the calculated and measured power calibration results and the agreement between the predicted failure threshold and that seen using the core ion chamber derived energies. Meeting the second objective was accomplished during the first three test phases by subjecting the fuel rods to energy depositions which bracketed the failure threshold. The failure threshold in terms of total pellet surface energy at the axial flux peak was found to be between 218 cal/g where no rod failure occurred and 256 cal/g where · rod failure did occur. The experiment predictions indicated that the failure threshold would be 262 cal/g at the pellet surface. Only the fourth experiment phase (527 cal/g) resulted in a pressure pulse upon rod failure. The best indication of source pressure was the reading from a 69 MPa EG&G pressure transducer at the flow shroud inlet. This pressure transducer indicated a pressure pulse upon rod failure of 28.2 MPa with a rise time of 1.6 ms. The source pressure was attenuated considerably outside the shroud region as indicated by pressure transducers in the upper plenum of the in-pile tube and in the flow bypass region. The maximum pressure indicated outside the flow shroud was 2.1 MPa. In general, instrumentation sensitivity to radiation was minimal. The most significant instrumentation problem during the power bursts was a false flowrate indication by the flow turbines. This problem is being examined. The Kaman and Bell & Howell pressure transducers showed the least sensitivity to radiation of the pressure measurement devices. The EG&G transducers were most sensitive. The locked linear variable differential transformer (LVDT) gave no indication of radiation sensitivity as its response during the burst was a straight line. The strain gages were very sensitive to radiation, indicating a strain increase of 70% with the second burst of RIA-ST-1. The Type S thermocouple did not exhibit significant radiation sensitivity. In addition, the RIA Scoping Test has provided data on the consequences of fuel rod failure during a RIA event at BWR hot startup conditions. Posttest examination of the fuel rods from the first two phases of the test revealed large quantities of UO{sub 2} fuel missing from the cladding. Fuel rod failures for energy depositions near the failure threshold in previous closed capsule tests without forced coolant flow resulted in only a slight amount of fuel loss.},
doi = {10.2172/1056640},
url = {https://www.osti.gov/biblio/1056640}, journal = {},
number = ,
volume = ,
place = {United States},
year = {1978},
month = {9}
}