Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Identification of root cause and abatement of vibration of monochromator.

Conference ·
OSTI ID:10559
Silicon crystal mirrors are used to reflect high-intensity X-ray beams. A large amount of heat is generated in each mirror. To minimize the effect of thermal expansion on the crystal mirrors, heat is removed by pumping liquid gallium (with a boiling point of 29.8 C) through passages in the crystal mirrors. During system operation, mirror motion should be kept to an acceptable level to avoid performance degradation. There are many potential sources of excitation to the crystal assembly; one such source is the flowing gallium. Two series of tests were performed earlier for a near-prototypical gallium cooling system (1-2). This paper describes a series of tests to measure the general vibration response characteristics of critical components in the monochromator system that contains the mirrors. The main objective of this work is to identify the root cause of vibration and to recommend general guidelines for abatement of vibration. This is achieved by performing many tests to understand the response characteristics under various conditions, by analysis of the response data, and by use of some theoretical considerations.
Research Organization:
Argonne National Lab., IL (US)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
W-31109-ENG-38
OSTI ID:
10559
Report Number(s):
ANL/ET/CP-95325
Country of Publication:
United States
Language:
English