skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Probing the Quark Sea and Gluons: the Electron-Ion Collider Projects

Conference · · PoS
OSTI ID:1054906

EIC is the generic name for the nuclear science-driven Electron-Ion Collider presently considered in the US. Such an EIC would be the world’s first polarized electron-proton collider, and the world’s first e-A collider. Very little remains known about the dynamical basis of the structure of hadrons and nuclei in terms of the fundamental quarks and gluons of Quantum Chromodynamics (QCD). A large community effort to sharpen a compelling nuclear science case for an EIC occurred during a ten-week program taking place at the Institute for Nuclear Theory (INT) in Seattle from September 13 to November 19, 2010. The critical capabilities of a stage-I EIC are a range in center-of-mass energies from 20 to 70 GeV and variable, full polarization of electrons and light ions (the latter both longitudinal and transverse), ion species up to A=200 or so, multiple interaction regions, and a high luminosity of about 10{sup 34} electron-nucleons per cm{sup 2} and per second. The physics program of such a stage-I EIC encompass inclusive measurements (ep/A{yields}e'+X), which require detection of the scattered lepon and/or the full scattered hadronic debris with high precision, semi-inclusive processes (ep/A{yields}e'+h+X), which require detection in coincidence with the scattered lepton of at least one (current or target region) hadron; and exclusive processes (ep/A{yields}e'+N'/A'+{gamma}/m), which require detection of all particles in the reaction. The main science themes of an EIC are to i) map the spin and spatial structure of quarks and gluons in nucleons, ii) discover the collective effects of gluons in atomic nuclei, and (iii) understand the emergence of hadronic matter from color charge. In addition, there are opportunities at an EIC for fundamental symmetry and nucleon structure measurements using the electroweak probe. To truly make headway to image the sea quarks and gluons in nucleons and nuclei, the EIC needs high luminosity over a range of energies as more exclusive scattering probabilities are small, and any integrated detector/interaction region design needs to provide uniform coverage to detect spectator and diffractive products. This is because e-p and even more e-A colliders have a large fraction of their science related to what happens to the nucleon or ion beams. As a result, the philosophy of integration of complex detectors into an extended interaction region faces challenging constraints. Designs feature crossing angles between the protons or heavy ions during collisions with electrons, to remove potential problems for the detector induced by synchrotron radiation. Designs allocate quite some detector space before the final-focus ion quads, at the cost of luminosity, given that uniform detection coverage is a must for deep exclusive and diffractive processes. The integrated EIC detector/interaction region design at JLab focused on establishing full acceptance for such processes over a wide range of proton energies (20-100 GeV) with well achievable interaction region magnets. The detector design at BNL uses the higher ion beam energies to achieve good detection efficiency for instance for protons following a DVCS reaction, for proton beam energies starting from 100 GeV. Following a recommendation of the 2007 US Nuclear Science Long-Range Planning effort, the DOE Office of Nuclear Physics (DOE/NP) has allocated accelerator R&D funds to lay the foundation for a polarized EIC. BNL, in association with JLab and DOE/NP, has also established a generic detector R&D program to address the scientific requirements for measurements at a future EIC.

Research Organization:
Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Nuclear Physics (NP)
DOE Contract Number:
AC05-06OR23177
OSTI ID:
1054906
Report Number(s):
JLAB-PHY-12-1506; DOE/OR/23177-2112
Journal Information:
PoS, Vol. QNP2012; Conference: QNP2012, 16-20 April 2012, Palaiseau, Paris
Country of Publication:
United States
Language:
English

Similar Records

The CEBAF II/ELIC Upgrade of CEBAF
Technical Report · Tue Apr 01 00:00:00 EST 2003 · OSTI ID:1054906

Gluons and the Quark Sea at High Energies: Distributions, Polarization, Tomography
Journal Article · Thu Jun 07 00:00:00 EDT 2012 · INT-PUB-11-034, BNL-96164-2011, JLAB-THY-11-1373, arXiv:1108.1713 · OSTI ID:1054906

Neutral Pion Electroproduction and development of a Neutral Particle Spectrometer
Thesis/Dissertation · Tue Sep 01 00:00:00 EDT 2020 · OSTI ID:1054906