skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hydroacoustic Evaluation of Juvenile Salmonid Passage and Distribution at Detroit Dam, 2011

Technical Report ·
DOI:https://doi.org/10.2172/1054850· OSTI ID:1054850

Pacific Northwest National Laboratory evaluated juvenile salmonid passage and distribution at Detroit Dam (DET) on the North Santiam River, Oregon for the U.S. Army Corps of Engineers (USACE) to provide data to support decisions on long-term measures to enhance downstream passage at DET and others dams in USACE’s Willamette Valley Project. This study was conducted in response to regulatory requirements necessitated by the listing of Upper Willamette River Spring Chinook salmon (Oncorhynchus tshawytscha) and Upper Willamette River steelhead (O. mykiss) as threatened under the Endangered Species Act. The goal of the study was to provide information of juvenile salmonid passage and distribution at DET from February 2011 through February 2012. The results of the hydroacoustic study provide new and, in some cases, first-ever data on passage estimates, run timing, distributions, and relationships between fish passage and environmental variables at the dam. This information will inform management decisions on the design and development of surface passage and collection devices to help restore Chinook salmon populations in the North Santiam River watershed above DET. During the entire study period, an estimated total of 182,526 smolt-size fish (±4,660 fish, 95% CI) passed through turbine penstock intakes. Run timing peaked in winter and early spring months. Passage rates were highest during late fall, winter and early spring months and low during summer. Horizontal distribution for hours when both turbine units were operated simultaneously indicated Unit 2 passed almost twice as much fish as Unit 1. Diel distribution for smolt-size fish during the study period was fairly uniform, indicating fish were passing the turbines at all times of the day. A total of 5,083 smolt-size fish (± 312 fish, 95% CI) were estimated passed via the spillway when it was open between June 23 and September 27, 2011. Daily passage was low at the spillway during the June-August period, and increased somewhat in September 2011. When the spillway was operated simultaneously with the turbines, spillway efficiency (efficiency is estimated as spillway passage divided by total project passage) was 0.72 and effectiveness (fish:flow ratio—proportion fish passage at a route (e.g., spillway) divided by proportion water through that route out of the total project) was 2.69. That is, when the spillway was open, 72% of the fish passing the dam used the spillway and 28% passed into the turbine penstocks. Diel distribution for smolt-size fish at the spillway shows a distinct peak in passage between mid-morning and mid-afternoon and low passage at night. We estimated that 23,339 smolt-size fish (± 572 fish, 95% CI) passed via the Regulating Outlet (RO) when it was open from October 29 through November 12, 2011, January 2-6, and January 20 through February 3, 2012. During the October–November period, RO passage peaked at 1,086 fish on November 5, with a second peak on November 7 (1,075 fish). When the RO was operated simultaneously with the turbines, RO efficiency was 0.33 and effectiveness was 0.89. In multiple regression analyses, a relatively parsimonious model was selected that predicted the observed fish passage data well. The best model included forebay temperature at depth, forebay elevation, total discharge, hours of daylight, and the operation period. The vertical distribution of fish in the forebay near the face of the dam where the transducers sampled showed fish were generally distributed throughout the water column during all four operational periods. During the refill and full pool periods, vertical distribution was bi-modal with surface-layer and mid-water modes. Patterns for day and night distributions were variable. Fish were distributed above and below the thermocline when it was present (full pool and drawdown periods).

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1054850
Report Number(s):
PNNL-21577 FINAL; 400403209
Country of Publication:
United States
Language:
English