Carbon Single-Wall Nanatube Growth in a Volumetrically Confined Arc Discharge System
Carbon nanotubes hold significant promise for a vast number of materials applications due to their unique mechanical, electrical, and gas storage properties. Although carbon single-wall nanotubes (SWNTs) have been synthesized since 1993 by the arc discharge method, and numerous other synthesis methods have since been developed, no method has yet produced 100% pure carbon nanotubes. Instead, a significant amount of impurities—various carbon structures and metal catalysts—are present in the raw soot. While arc discharge was the first method for SWNT synthesis, it also produces more impure raw soot in comparison to the more recently developed laser vaporization, which has produced the purest raw soot to date but is much slower. Geometry and thermal gradient are appreciably different between traditional arc discharge systems and laser vaporization systems. We report that, by incorporating some characteristics inherent to a laser vaporization system into an arc discharge system, improvement in the yield of SWNT raw soot may be achieved. This is accomplished by confining the arc within a 50 mm diameter quartz tube, similar to laser vaporization. We find through transmission electron microscopy and Raman spectroscopy that SWNTs are made in significant numbers in this confined arc discharge system, comparable to laser vaporization synthesized material. Further study is, however, required to prove reproducibility and attain an exact value for the purity of the produced raw soot.
- Research Organization:
- DOESC (USDOE Office of Science (SC) (United States))
- Sponsoring Organization:
- USDOE Office of Science (SC)
- OSTI ID:
- 1051665
- Journal Information:
- Journal of Undergraduate Research, Journal Name: Journal of Undergraduate Research Vol. 4
- Country of Publication:
- United States
- Language:
- English
Similar Records
Mechanism of carbon nanostructure synthesis in arc plasma
Monitoring nanoparticle synthesis in a carbon arc discharge environment, in situ