skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Continuum representation of a continuous size distribution of particles engaged in rapid granular flow

Journal Article · · Physics of Fluids (1994)
DOI:https://doi.org/10.1063/1.4744987· OSTI ID:1051556

Natural and industrial granular flows often consist of several particle sizes, approximately forming a continuous particle size distribution (PSD). Continuous PSDs are ubiquitous, though existing kinetic-theory-based, hydrodynamic models for rapid granular flows are limited to a discrete number of species. The objective of this work is twofold: (i) to determine the number of discrete species required to accurately approximate a continuous PSD and (ii) to validate these results via a comparison with molecular dynamics (MD) simulations of continuous PSDs. With regard to the former, several analytic (Gaussian and lognormal) and experimental (coal and lunar soil simulants) distributions are investigated. Transport coefficients (pressure, shear viscosity, etc.) of the granular mixture given by the polydisperse theory of Garz´o et al. [“Enskog theory for polydisperse granular mixtures. I. Navier-Stokes order transport,” Phys. Rev. E 76, 031303 (2007);“Enskog theory for polydisperse granular mixtures. I. Navier-Stokes order transport,” 76, 031304 (2007)] are compared using an increasing number of species s to approximate the given PSD. These discrete approximations are determined by matching the first 2s moments of the approximation and the given continuous distribution. Relatively few species are required to approximate moderately wide distributions (Gaussian, lognormal), whereas even wider distributions (coal and lunar soil simulants) require a larger number of species. Regarding the second objective, a comparison between MD simulations and kinetictheory predictions for a simple shear flow of both Gaussian and lognormal PSDs reveal essentially no loss of accuracy stemming from the polydisperse theory itself (as compared to theories for monodisperse systems) or from the discrete approximations of continuous PSDs used in the polydisperse theory. C 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4744987]

Research Organization:
National Energy Technology Lab. (NETL), Pittsburgh, PA, and Morgantown, WV (United States). In-house Research; National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV (United States)
Sponsoring Organization:
USDOE Office of Fossil Energy (FE)
OSTI ID:
1051556
Report Number(s):
NETL-PUB-191
Journal Information:
Physics of Fluids (1994), Vol. 24, Issue 8; ISSN 1070-6631
Publisher:
American Institute of Physics
Country of Publication:
United States
Language:
English

Similar Records

Development, Verification, and Validation of Multiphase Models for Polydisperse Flows
Technical Report · Sat Dec 31 00:00:00 EST 2011 · OSTI ID:1051556

A moment-based kinetic theory model for polydisperse gas–particle flows
Journal Article · Sat Apr 20 00:00:00 EDT 2019 · Powder Technology · OSTI ID:1051556

Homogeneous states in driven granular mixtures: Enskog kinetic theory versus molecular dynamics simulations
Journal Article · Mon Apr 28 00:00:00 EDT 2014 · Journal of Chemical Physics · OSTI ID:1051556

Related Subjects