Imaging hydrated microbial extracellular polymers: Comparative analysis by electron microscopy
Microbe-mineral and -metal interactions represent a major intersection between the biosphere and geosphere but require high-resolution imaging and analytical tools for investigating microscale associations. Electron microscopy has been used extensively for geomicrobial investigations and although used bona fide, the traditional methods of sample preparation do not preserve the native morphology of microbiological components, especially extracellular polymers. Herein, we present a direct comparative analysis of microbial interactions using conventional electron microscopy approaches of imaging at room temperature and a suite of cryogenic electron microscopy methods providing imaging in the close-to-natural hydrated state. In situ, we observed an irreversible transformation of the hydrated bacterial extracellular polymers during the traditional dehydration-based sample preparation that resulted in their collapse into filamentous structures. Dehydration-induced polymer collapse can lead to inaccurate spatial relationships and hence could subsequently affect conclusions regarding nature of interactions between microbial extracellular polymers and their environment.
- Research Organization:
- Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US)
- Sponsoring Organization:
- Earth Sciences Division
- DOE Contract Number:
- AC02-05CH11231
- OSTI ID:
- 1050722
- Report Number(s):
- LBNL-4861E
- Journal Information:
- Applied and Environmental Microbiology, Journal Name: Applied and Environmental Microbiology Journal Issue: 4 Vol. 77; ISSN 0099-2240
- Country of Publication:
- United States
- Language:
- English
Similar Records
Exploring the geophysical signatures of microbial processes in the earth
Ecology, Microbial