Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Lithium intercalation in porous carbon electrodes

Conference ·
OSTI ID:105041

Carbons derived from the phase separation of polyacrylonitrile/solvent mixtures were investigated as lithium intercalation anodes for rechargeable lithium-ion batteries. The carbon electrodes have a bulk density of 0.35-0.5 g/cm{sup 3}, relatively low surface areas (< 10 m{sup 2}/g), and micron-size cells. Pyrolysis temperature influences the reversible lithium intercalation and the irreversible capacity (associated with the formation of the passivating layer). Carbon electrodes pyrolyzed at 600{degrees}C have first-cycle capacity as high as 550 mAh/g as well as large irreversible capacity, 440 mAh/g. Electrodes prepared at 1050{degrees}C have reversible capacities around 270 mAh/g with relatively lower capacity losses (120 mAh/g). Doping the organic precursors with phosphoric acid, prior to pyrolysis at 1050{degrees}C, leads to carbon electrodes with reversible capacities as high as 450 mAh/g. The capacity of doped carbon increased with increasing phosphorus concentration in the samples. The doped carbon anodes exhibited good cycleability and excellent coulombic efficiency. The electrochemical performance is related to morphology, chemical composition, and local structural order.

Research Organization:
Lawrence Livermore National Lab., CA (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
105041
Report Number(s):
UCRL-JC--120314; CONF-950412--53; ON: DE95017815
Country of Publication:
United States
Language:
English

Similar Records

Lithium intercalation in porous carbon anodes
Conference · Tue Nov 22 23:00:00 EST 1994 · OSTI ID:161456

Carbonaceous materials as lithium intercalation anodes
Conference · Sat Oct 01 00:00:00 EDT 1994 · OSTI ID:147725

Commercial carbonaceous materials as lithium intercalation anodes
Journal Article · Sun Oct 01 00:00:00 EDT 1995 · Journal of the Electrochemical Society · OSTI ID:131764