skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Building a road map for tailoring multilayer polyelectrolyte films

Journal Article · · Notiziario Neutroni E Luce di Sincrotrone
OSTI ID:1049071

Researchers are moving a step closer to a definite road map for building layer-by-layer (LbL) assembled polyelectrolyte films, with the assistance of the Liquids Reflectometer at Oak Ridge National Laboratory's Spallation Neutron Source, in Oak Ridge, Tennessee. Scientists using the liquids reflectometer have successfully taken snapshots in close to real time of these multilayered structures for different applications when they modify the structure and function parameters. Polyelecrolytes are polymers that carry charge in aqueous solutions. They contain chemical groups that dissociate in water, making such polymers charged. Most polyelectrolytes are water soluble. They are important components in foods, soaps, shampoos, and cosmetics products. They show promise for such environmental work as oil recovery and water treatment. Polyelectrolytes are compelling because researchers can chemically modify how they interact with water for multiple applications. When two types of polyelectrolytes of opposite charge are assembled at a surface in a sequential way using the LbL assembly technique, 'the result is the forming of surface films, useful for coatings, biomedical implants and devices, controlling adhesion of biological molecules, and controlling delivery of therapeutic molecules from surfaces,' said Svetlana Sukhishvili of the Stevens Institute of Technology in New Jersey, the lead chemist on the collaboration. 'Medical doctors often prefer to deliver multiple therapeutic compounds from the coatings in a time-resolved manner,' Sukhishvili said. 'To assist them, material scientists need to learn how to build coatings in which polymer layering will not be compromised when exposed to normal physiological conditions.' 'Being able to control these properties, understanding how what you do to the materials affects their properties, this allows you to apply them to situations where interacting with an environment is very helpful, whether in a biological context or any other kind of water soluble context,' said John Ankner, lead instrument scientist for the Liquids Reflectometer. Ankner said that when several parameters are systematically altered, that allows researchers to map out the whole range of structures in the polymer. 'This work really sets a road map for how to get started with synthesizing polyelectrolyte materials for specific applications. Then, one can say, ok, this methylated material, the one that is 30% charged, is going to be what we want to use for a particular application.' The ORNL collaboration with the Stevens Institute has been conducting a series of experiments at the SNS to study layered film stratification in these polymers. Researchers stitch the polyelectrolyte chains in the LbL films together through what is called ionic pairing and arrange them within fuzzy, ultrathin layers that lie parallel to a solid surface substrate. Exposure of these films to aqueous solutions that contain salt (i.e., conditions that imitate real life) can compromise this film layering, as the salt ions act to weaken the ionic pairing that binds such layers together. So salt solutions are of key interest in studying how to make such layers for use in human applications. In the first research, Ankner, Sukhishvili and her student Li Xu looked at the effects of the layering of two types of LbL films of changing the charge density with a salt solution, and of blocking access to a charged site by nearby groups. The films were composed of positively charged variants of PDMA, a methyl polymer, and PDEA, an ethyl polymer. The other component of both systems is the ion exchanger polystyrene sulfonate (PSS) which features a fixed negative charge. First, a silicon substrate was dipped into solutions of PDMA and PDEA in dilute sodium chloride for a fixed time. Depending on the deposition time and the concentration of the solution, a nanometer-thick monolayer of the polymer adsorbs to the silicon surface. The film buildup is then continued by depositing a layer of PSS, and the cycle is repeated. The PDMA (methyl)/PSS and PDEA (ethyl)/PSS films were then annealed in varying concentrations of aqueous salt solutions. The chemists wanted to know if in these multi-layer cake-like assemblies, the structure can be systematically altered by varying the salt concentration, time in solution, and ultimately other environmental parameters, such as temperature or pH. Neutron reflectivity of the layered films exhibits the quality of the layering, in particular the concentration of the layers and how intermixed they are with adjacent layers. In this research, neutron reflectivity data from films built from 10%, 40%, and 100% charged PDMA or PDEA polyelectrolytes and 100% charged PSS were quantitatively compared to predicted, layered arrangements until the models produced reflectivity patterns matching those of the data.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)
Sponsoring Organization:
USDOE
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
1049071
Journal Information:
Notiziario Neutroni E Luce di Sincrotrone, Vol. 17, Issue 2; ISSN 1592-7822
Country of Publication:
United States
Language:
English