skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Laboratory Measurements and Model Sensitivity Studies of Dust Deposition Ice Nucleation

Journal Article · · Atmospheric Chemistry and Physics

We investigated the ice nucleating properties of mineral dust particles to understand the sensitivity of simulated cloud properties to two different representations of contact angle in the Classical Nucleation Theory (CNT). These contact angle representations are based on two sets of laboratory deposition ice nucleation measurements: Arizona Test Dust (ATD) particles of 100, 300 and 500 nm sizes were tested at three different temperatures (-25, -30 and -35 C), and 400 nm ATD and kaolinite dust species were tested at two different temperatures (-30 and -35 C). These measurements were used to derive the onset relative humidity with respect to ice (RH{sub ice}) required to activate 1% of dust particles as ice nuclei, from which the onset single contact angles were then calculated based on CNT. For the probability density function (PDF) representation, parameters of the log-normal contact angle distribution were determined by fitting CNT-predicted activated fraction to the measurements at different RH{sub ice}. Results show that onset single contact angles vary from {approx}18 to 24 degrees, while the PDF parameters are sensitive to the measurement conditions (i.e. temperature and dust size). Cloud modeling simulations were performed to understand the sensitivity of cloud properties (i.e. ice number concentration, ice water content, and cloud initiation times) to the representation of contact angle and PDF distribution parameters. The model simulations show that cloud properties are sensitive to onset single contact angles and PDF distribution parameters. The comparison of our experimental results with other studies shows that under similar measurement conditions the onset single contact angles are consistent within {+-}2.0 degrees, while our derived PDF parameters have larger discrepancies.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1049019
Report Number(s):
PNNL-SA-83107; TRN: US201217%%290
Journal Information:
Atmospheric Chemistry and Physics, Vol. 12, Issue 16; ISSN 1680-7316
Country of Publication:
United States
Language:
English