Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

High-order entropy-based closures for linear transport in slab geometry II: A computational study of the optimization problem

Journal Article · · SIAM Journal on Scientific Computing
OSTI ID:1048145

We present a numerical algorithm to implement entropy-based (M{sub N}) moment models in the context of a simple, linear kinetic equation for particles moving through a material slab. The closure for these models - as is the case for all entropy-based models - is derived through the solution of constrained, convex optimization problem. The algorithm has two components. The first component is a discretization of the moment equations which preserves the set of realizable moments, thereby ensuring that the optimization problem has a solution (in exact arithmetic). The discretization is a second-order kinetic scheme which uses MUSCL-type limiting in space and a strong-stability-preserving, Runge-Kutta time integrator. The second component of the algorithm is a Newton-based solver for the dual optimization problem, which uses an adaptive quadrature to evaluate integrals in the dual objective and its derivatives. The accuracy of the numerical solution to the dual problem plays a key role in the time step restriction for the kinetic scheme. We study in detail the difficulties in the dual problem that arise near the boundary of realizable moments, where quadrature formulas are less reliable and the Hessian of the dual objection function is highly ill-conditioned. Extensive numerical experiments are performed to illustrate these difficulties. In cases where the dual problem becomes 'too difficult' to solve numerically, we propose a regularization technique to artificially move moments away from the realizable boundary in a way that still preserves local particle concentrations. We present results of numerical simulations for two challenging test problems in order to quantify the characteristics of the optimization solver and to investigate when and how frequently the regularization is needed.

Research Organization:
Oak Ridge National Laboratory (ORNL)
Sponsoring Organization:
SC USDOE - Office of Science (SC)
DOE Contract Number:
AC05-00OR22725
OSTI ID:
1048145
Journal Information:
SIAM Journal on Scientific Computing, Journal Name: SIAM Journal on Scientific Computing Journal Issue: 4 Vol. 34; ISSN 1064-8275; ISSN SJOCE3
Country of Publication:
United States
Language:
English

Similar Records

A Regularized Entropy-Based Moment Method for Kinetic Equations
Journal Article · Thu Sep 05 00:00:00 EDT 2019 · SIAM Journal of Applied Mathematics · OSTI ID:1845814

A high-order finite difference method for moving immersed domain boundaries and material interfaces
Journal Article · Tue Apr 02 00:00:00 EDT 2024 · Journal of Computational Physics · OSTI ID:2338053

Analysis of the Spectral Stability of the Generalized Runge–Kutta Methods Applied to Initial-Boundary-Value Problems for Equations of the Parabolic Type. II. Implicit Methods
Journal Article · Mon Jan 14 23:00:00 EST 2019 · Journal of Mathematical Sciences · OSTI ID:22773577