Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

NO2 uptake under practically relevant conditions on BaO/Pt(111)

Journal Article · · Catalysis Today
The formation of nitrites and nitrates (Ba(NOx)2) under practically relevant conditions (PNO2 up to 1.0 Torr and T = 500 K) and their thermal decomposition on BaO (>20 monolayer equivalent (MLE))/Pt(1 1 1) were studied using temperature programmed desorption (TPD), infrared reflection absorption (IRA), and Xray photoelectron (XP) spectroscopies. The exposure of BaO to 1.0 × 10-8 Torr NO2 at 500 K leads to the formation of a Ba(NOx)2 layer with small, disordered crystalline nitrate clusters. Under these conditions (PNO2 = 1.0 × 10-8 Torr and T = 500 K) only the top portion of the BaO layer converts to Ba(NOx)2 and the nitrites in this Ba(NOx)2 layer stay without converting completely to nitrates even after 100 min of NO2 exposure. In the thermal decomposition of Ba(NOx)2, first nitrites decompose, releasing NO and then the decomposition of nitrates occurs via two pathways releasing NO2 and NO + O2. At 500 K and PNO2 ≥ 1.0 × 10-7 Torr, first NO2 reacts with BaO to form small disordered crystalline Ba(NO3)2 particles and then these particles agglomerate to form large, well-ordered (bulk-like) crystalline nitrates as the NO2 exposure increases. The thermal decomposition of these well-ordered, bulk-like crystalline nitrate aggregates occurs in two steps releasing NO2 and NO + O2 in each step in two different temperature regions. NO2 pressure ≥1.0 × 10-5 Torr is required for the complete oxidation of initially formed nitrites to nitrates and the full nitration of the BaO layer at 500 K sample temperature. We gratefully acknowledge the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle Memorial Institute under contract number DE-AC05-76RL01830.
Research Organization:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1047386
Report Number(s):
PNNL-SA-85709; 830403000
Journal Information:
Catalysis Today, Journal Name: Catalysis Today Journal Issue: 1 Vol. 181; ISSN 0920-5861
Publisher:
Elsevier
Country of Publication:
United States
Language:
English

Similar Records

Reactions of NO2 with BaO/Pt(111) Model Catalysts: The Effects of BaO Film Thickness and NO2 Pressure on the Formation of Ba(NOx)2 Species
Journal Article · Tue May 31 00:00:00 EDT 2011 · Physical Chemistry Chemical Physics. PCCP, 13(23):11016-11026 · OSTI ID:1018131

Reactions of NO2 with Ba(OH)2 on Pt(111)
Journal Article · Thu Oct 14 00:00:00 EDT 2010 · Journal of Physical Chemistry C, 114(40):16955-16963 · OSTI ID:1000601

Understanding Automotive Exhaust Catalysts Using a Surface Science Approach: Model NOx Storage Materials
Journal Article · Fri Nov 01 00:00:00 EDT 2013 · Topics in Catalysis, 56(15-17):1420-1440 · OSTI ID:1107487