skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Final Project Report: "Exploratory Research: Mercury Stable Isotopes as Indicators of the Biogeochemical Cycling of Mercury"

Technical Report ·
DOI:https://doi.org/10.2172/1047186· OSTI ID:1047186

This is the final project report for award DE-SC0005351, which supported the research project "Exploratory Research: Mercury Stable Isotopes as Indicators of the Biogeochemical Cycling of Mercury. "This exploratory project investigated the use of mercury (Hg) stable isotope measurements as a new approach to study how Hg moves and changes its chemical form in environmental systems, with particular focus on the East Fork of Poplar Creek (EFPC) near the DOE Y-12 plant (a Hg contamination source). This study developed analytical methods and collected pilot data that have set the stage for more detailed studies and have begun to provide insights into Hg movement and chemical changes. The overall Hg stable isotope approach was effective. The Hg isotope analysis methods yielded high-precision measurements of the sediment, water, and fish samples analyzed; quality control measures demonstrated the precision. The pilot data show that the 202Hg/198Hg, 199Hg/198Hg, and 201Hg/198Hg isotope ratios vary in this system. 202Hg/198Hg ratios of the Hg released from the Y-12 plant are relatively high, and those of the regional Hg background in soils and river sediments are significantly lower. Unfortunately, 202Hg/198Hg differences that might have been useful to distinguish early Hg releases from later releases were not observed. However, 202Hg/198Hg ratios in sediments do provide insights into chemical transformations that may occur as Hg moves through the system. Furthermore, 199Hg/198Hg and 201Hg/198Hg ratio analyses of fish tissues indicate that the effects of sunlight-driven chemical reactions on the Hg that eventually ends up in EFPC fish are measureable, but small. These results provide a starting point for a more detailed study (already begun at Univ. of Michigan) that will continue Hg isotope ratio work aimed at improving understanding of how Hg moves, changes chemically, and does or does not take on more highly toxic forms in the Oak Ridge area. This work also benefits efforts to trace Hg contamination in the Clinch and Tennessee Rivers, into which EFPC flows, and to distinguish Hg from the Y-12 plant from that released from a nearby coal ash accident.

Research Organization:
Univ. of Illinois at Urbana-Champaign, IL (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
SC0005351
OSTI ID:
1047186
Report Number(s):
DOE/SC0005351-1
Country of Publication:
United States
Language:
English