skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Waveforms Measured in Confined Thermobaric Explosion

Abstract

Experiments with 1.5-g Shock-Dispersed-Fuel (SDF) charges have been conducted in six different chambers. Both flake Aluminum and TNT were used as the fuel. Static pressure gauges on the chamber wall were the main diagnostic. Waveforms for explosions in air were significantly larger than those in nitrogen - thereby demonstrating a strong thermobaric (combustion) effect. This effect increases as the confinement volume decreases and the mixture richness approaches 1.

Authors:
; ;
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1046795
Report Number(s):
UCRL-CONF-231296
TRN: US201215%%535
DOE Contract Number:
W-7405-ENG-48
Resource Type:
Conference
Resource Relation:
Conference: Presented at: 37th International Conference Energetic Materials Characterisation and Performance of Advanced Systems, Karlsruhe, Germany, Jun 26 - Jun 29, 2007
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; AIR; ALUMINIUM; COMBUSTION; CONFINEMENT; EXPLOSIONS; MIXTURES; NITROGEN; PERFORMANCE; TNT; WAVE FORMS

Citation Formats

Reichenbach, H, Neuwald, P, and Kuhl, A L. Waveforms Measured in Confined Thermobaric Explosion. United States: N. p., 2007. Web.
Reichenbach, H, Neuwald, P, & Kuhl, A L. Waveforms Measured in Confined Thermobaric Explosion. United States.
Reichenbach, H, Neuwald, P, and Kuhl, A L. Fri . "Waveforms Measured in Confined Thermobaric Explosion". United States. doi:. https://www.osti.gov/servlets/purl/1046795.
@article{osti_1046795,
title = {Waveforms Measured in Confined Thermobaric Explosion},
author = {Reichenbach, H and Neuwald, P and Kuhl, A L},
abstractNote = {Experiments with 1.5-g Shock-Dispersed-Fuel (SDF) charges have been conducted in six different chambers. Both flake Aluminum and TNT were used as the fuel. Static pressure gauges on the chamber wall were the main diagnostic. Waveforms for explosions in air were significantly larger than those in nitrogen - thereby demonstrating a strong thermobaric (combustion) effect. This effect increases as the confinement volume decreases and the mixture richness approaches 1.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri May 04 00:00:00 EDT 2007},
month = {Fri May 04 00:00:00 EDT 2007}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • We characterize the measured electric field-derivative (dE/dt) waveforms of lightning stepped-leader steps from three negative lightning flashes at distances of tens to hundreds of meters. Electromagnetic signatures of leader steps at such close distances have rarely been documented in previous literature. Individual leader-step three-dimensional locations are determined by a dE/dt TOA system. The leader-step field derivative is typically a bipolar pulse with a sharp initial half-cycle of the same polarity as that of the return stroke, followed by an opposite polarity overshoot that decays relatively slowly to background level. This overshoot increases in amplitude relative to the initial peak andmore » becomes dominant as range decreases. The initial peak is often preceded by a 'slow front,' similar to the slow front that precedes the fast transition to peak in first return stroke dE/dt and E waveforms. The overall step-field waveform duration is typically less than 1 {micro}s. The mean initial peak of dE/dt, range-normalized to 100 km, is 7.4 V m{sup -1} {micro}s{sup -1} (standard deviation (S.D.), 3.7 V m{sup -1} {micro}s{sup -1}, N = 103), the mean half-peak width is 33.5 ns (S.D., 11.9 ns, N = 69), and the mean 10-to-90% risetime is 43.6 ns (S.D., 24.2 ns, N = 69). From modeling, we determine the properties of the leader step currents which produced two typical measured field derivatives, and we use one of these currents to calculate predicted leader step E and dE/dt as a function of source range and height, the results being in good agreement with our observations. The two modeled current waveforms had maximum rates of current rise-to-peak near 100 kA {micro}s{sup -1}, peak currents in the 5-7 kA range, current half-peak widths of about 300 ns, and charge transfers of {approx}3 mC. As part of the modeling, those currents were propagated upward at 1.5 x 10{sup 8} m s{sup -1}, with their amplitudes decaying exponentially with a decay height constant of 25 m.« less
  • Effects of turbulent combustion induced by explosion of a 0.8 kg cylindrical charge of TNT in a 17 m 3 chamber filled with air, are investigated. The detonation wave in the charge transforms the solid explosive (C 7H 5N 3O 6) to gaseous products, rich (~20% each) in carbon dust and carbon monoxide. The detonation pressure (~210 kb) thereby engendered causes the products to expand rapidly, driving a blast wave into the surrounding air. The interface between the products and air, being essentially unstable as a consequence of strong acceleration to which it is subjected within the blast wave, evolvesmore » into a turbulent mixing layer-a process enhanced by shock reflections from the walls. Under such circumstances rapid combustion takes place where the expanded detonation products play the role of fuel. Its dynamic effect is manifested by the experimental measurement of ~3 bar pressure increase in the chamber, in contrast to ~1bar attained by a corresponding TNT explosion in nitrogen. The experiments were modeled as a turbulent combustion in an unmixed system at infinite Reynolds, Peclet and DamkGhler numbers. The CFD solution was obtained by a high-order Godunov scheme using an AMR (Adaptive Mesh Refinement) to trace the turbulent mixing on the computational grid in as much detail as possible. The evolution of the mass fraction of fuel consumed by combustion thus determined exhibited the properties of an exponential decay following a sharp initiation. The results reveal all the dynamic features of the exothermic process of combustion controlled by fluid mechanic transport in a highly turbulent field, in contrast to those elucidated by the conventional reaction-diffusion model.« less
  • The effects of turbulent combustion of detonation products gases in a confined explosion are explored via laboratory experiments and high-resolution numerical simulations. The expanded products from the detonation of a TNT charge are rich in C and CO, which act as a fuel. When these hot gases mix with air, they are oxidized to CO2--thereby releasing 2482 Cal/g in addition to the 1093 Cal/g deposited by the detonation wave. In this case, the exothermic power is controlled by the turbulent mixing rate, rather than by chemistry. A kinetic law of turbulent combustion is suggested for this process. Pressure histories frommore » the numerical simulations were in good agreement with the experimental measurements--demonstrating that the numerical model contains the fundamental mechanism that controls the exothermic process.« less
  • Considered here are explosions from condensed TNT charges--where the expanded detonation products gases are rich in C and CO [1]. Mixing with air causes oxidation/combustion [2], which dramatically increases the pressure in confined systems (vid. Fig. 1). We treat this as an Inverse Problem: infer fuel consumption from the measured pressure P {triple_bond} {bar p}(t)/p{sub i}. The Model expounded here represents a valuable tool for extracting the evolution of combustion system from a readily measurable quantity (pressure). The Model establishes the fuel consumption history as well as the evolution of thermodynamic solution (specific volumes, energies and densities) of the componentsmore » that will generate the observed pressure profile. This solution in Thermodynamic (State) Space provides extraordinarily clear insight into the combustion process, which is normally clouded by a myriad of transport processes that occur in physical space.« less