Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Analysis of Abrasive Blasting of DOP-26 Iridium Alloy

Journal Article · · International Journal of Refractory Metals and Hard Materials

The effects of abrasive blasting on the surface geometry and microstructure of DOP-26 iridium alloy (Ir-0.3% W-0.006% Th 0.005% Al) have been investigated. Abrasive blasting has been used to control emissivity of components operating at elevated temperature. The effects of abrasive blasting conditions on surface morphology were investigated both experimentally and by numerical modeling. The simplified model, based on finite element analysis of a single angular particle impacting on Ir alloy disk, calculates the surface deformation and residual strain distribution. The experimental results and modeling results both indicate that the surface geometry is not sensitive to the abrasive blast process conditions of nozzle pressure and standoff distance considered in this study. On the other hand, the modeling results suggest that the angularity of the abrasive particle has an important role in determining surface geometry, which in turn, affects the emissivity. Abrasive blasting causes localized surface strains and localized recrystallization, but it does not affect grain size following extended exposure at elevated temperature. The dependence of emissivity of the DOP-26 alloy on mean surface slope follows a similar trend to that reported for pure iridium.

Research Organization:
Oak Ridge National Laboratory (ORNL)
Sponsoring Organization:
NE USDOE - Office of Nuclear Energy
DOE Contract Number:
AC05-00OR22725
OSTI ID:
1045220
Journal Information:
International Journal of Refractory Metals and Hard Materials, Journal Name: International Journal of Refractory Metals and Hard Materials Vol. 35; ISSN 0263-4368
Country of Publication:
United States
Language:
English