Structural Basis of Multifunctionality in a Vitamin B[subscript 12]-processing Enzyme
- Michigan
An early step in the intracellular processing of vitamin B{sub 12} involves CblC, which exhibits dual reactivity, catalyzing the reductive decyanation of cyanocobalamin (vitamin B{sub 12}), and the dealkylation of alkylcobalamins (e.g. methylcobalamin; MeCbl). Insights into how the CblC scaffold supports this chemical dichotomy have been unavailable despite it being the most common locus of patient mutations associated with inherited cobalamin disorders that manifest in both severe homocystinuria and methylmalonic aciduria. Herein, we report structures of human CblC, with and without bound MeCbl, which provide novel biochemical insights into its mechanism of action. Our results reveal that CblC is the most divergent member of the NADPH-dependent flavin reductase family and can use FMN or FAD as a prosthetic group to catalyze reductive decyanation. Furthermore, CblC is the first example of an enzyme with glutathione transferase activity that has a sequence and structure unrelated to the GST superfamily. CblC thus represents an example of evolutionary adaptation of a common structural platform to perform diverse chemistries. The CblC structure allows us to rationalize the biochemical basis of a number of pathological mutations associated with severe clinical phenotypes.
- Research Organization:
- Advanced Photon Source (APS), Argonne National Laboratory (ANL), Argonne, IL (US)
- Sponsoring Organization:
- NIH
- OSTI ID:
- 1045036
- Journal Information:
- Journal of Biological Chemistry, Journal Name: Journal of Biological Chemistry Journal Issue: 34 Vol. 286; ISSN 0021-9258; ISSN JBCHA3
- Country of Publication:
- United States
- Language:
- ENGLISH
Similar Records
Coordination chemistry controls the thiol oxidase activity of the B12-trafficking protein CblC
Structure of ATP-Bound Human ATP:Cobalamin Adenosyltransferase