skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Design and performance of a new induction furnace for heat treatment of superconducting radiofrequency niobium cavities

Abstract

Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low ({approx}120 deg C) and high ({approx}800 deg C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching. The furnace was operated up to 1400 deg C with a maximum pressure of {approx}1 x 10{sup -5} Torr and the maximum achievable temperature is estimated to be higher than 2000 deg C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 deg C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of {approx}2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.

Authors:
Publication Date:
Research Org.:
Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1044179
Report Number(s):
JLAB-ACC-12-1554; DOE/OR/23177-2198
Journal ID: ISSN 0034-6748; RSINAK; TRN: US1203349
DOE Contract Number:
AC05-06OR23177
Resource Type:
Journal Article
Resource Relation:
Journal Name: Review of Scientific Instruments; Journal Volume: 83; Journal Issue: 6
Country of Publication:
United States
Language:
English
Subject:
43 PARTICLE ACCELERATORS; ACCELERATORS; CAVITIES; CONTAMINATION; DESIGN; ETCHING; FABRICATION; FURNACES; HEAT TREATMENTS; HEATING SYSTEMS; INDUCTION; INDUCTION FURNACES; NIOBIUM; PERFORMANCE; RADIATIONS

Citation Formats

Pashupati Dhakal, Gianluigi Ciovati, Wayne Rigby, John Wallace, Ganapati Rao Myneni. Design and performance of a new induction furnace for heat treatment of superconducting radiofrequency niobium cavities. United States: N. p., 2012. Web. doi:10.1063/1.4725589.
Pashupati Dhakal, Gianluigi Ciovati, Wayne Rigby, John Wallace, Ganapati Rao Myneni. Design and performance of a new induction furnace for heat treatment of superconducting radiofrequency niobium cavities. United States. doi:10.1063/1.4725589.
Pashupati Dhakal, Gianluigi Ciovati, Wayne Rigby, John Wallace, Ganapati Rao Myneni. 2012. "Design and performance of a new induction furnace for heat treatment of superconducting radiofrequency niobium cavities". United States. doi:10.1063/1.4725589. https://www.osti.gov/servlets/purl/1044179.
@article{osti_1044179,
title = {Design and performance of a new induction furnace for heat treatment of superconducting radiofrequency niobium cavities},
author = {Pashupati Dhakal, Gianluigi Ciovati, Wayne Rigby, John Wallace, Ganapati Rao Myneni},
abstractNote = {Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low ({approx}120 deg C) and high ({approx}800 deg C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching. The furnace was operated up to 1400 deg C with a maximum pressure of {approx}1 x 10{sup -5} Torr and the maximum achievable temperature is estimated to be higher than 2000 deg C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 deg C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of {approx}2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.},
doi = {10.1063/1.4725589},
journal = {Review of Scientific Instruments},
number = 6,
volume = 83,
place = {United States},
year = 2012,
month = 6
}
  • Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low ({approx}120 Degree-Sign C) and high ({approx}800 Degree-Sign C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching.more » The furnace was operated up to 1400 Degree-Sign C with a maximum pressure of {approx}1 Multiplication-Sign 10{sup -5} Torr and the maximum achievable temperature is estimated to be higher than 2000 Degree-Sign C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 Degree-Sign C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of {approx}2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.« less
  • As a result of collaboration between Jefferson Lab and niobium manufacturer Companhia Brasileira de Metalurgia e Mineração (CBMM), ingot niobium was explored as a possible material for superconducting radiofrequency (SRF) cavity fabrication. The first single cell cavity from large-grain high purity niobium was fabricated and successfully tested at Jefferson Lab in 2004. This work triggered research activities in other SRF laboratories around the world. The large-grain (LG) niobium became not only an interesting alternative material for cavity builders, but also material scientists and surface scientists were eager to participate in the development of this technology. Many single cell cavities mademore » from material of different suppliers have been tested successfully and several multi-cell cavities have shown performances comparable to the best cavities made from standard fine-grain niobium. Several 9-cell cavities fabricated by Research Instruments and tested at DESY exceeded the best performing fine grain cavities with a record accelerating gradient of E acc=45.6 MV/m. The quality factor of those cavities was also higher than that of fine-grain (FG) cavities processed with the same methods. Such performance levels push the state-of-the art of SRF technology and are of great interest for future accelerators. This contribution reviews the development of ingot niobium technology and highlights some of the differences compared to standard FG material and opportunities for further developments.« less
  • Accelerator performance, in particular the average accelerating field and the cavity quality factor, depends on the physical and chemical characteristics of the superconducting radio-frequency (SRF) cavity surface. Plasma based surface modification provides an excellent opportunity to eliminate nonsuperconductive pollutants in the penetration depth region and to remove the mechanically damaged surface layer, which improves the surface roughness. Here we show that the plasma treatment of bulk niobium (Nb) presents an alternative surface preparation method to the commonly used buffered chemical polishing and electropolishing methods. We have optimized the experimental conditions in the microwave glow discharge system and their influence onmore » the Nb removal rate on flat samples. We have achieved an etching rate of 1.7  μm/min⁡ using only 3% chlorine in the reactive mixture. Combining a fast etching step with a moderate one, we have improved the surface roughness without exposing the sample surface to the environment. We intend to apply the optimized experimental conditions to the preparation of single cell cavities, pursuing the improvement of their rf performance.« less
  • Microroughness is viewed as a critical issue for attaining optimum performance of superconducting radio frequency accelerator cavities. The principal surface smoothing methods are buffered chemical polish (BCP) and electropolish (EP). The resulting topography is characterized by atomic force microscopy (AFM). The power spectral density (PSD) of AFM data provides a more thorough description of the topography than a single-value roughness measurement. In this work, one dimensional average PSD functions derived from topography of BCP and EP with different controlled starting conditions and durations have been fitted with a combination of power law, K correlation, and shifted Gaussian models to extractmore » characteristic parameters at different spatial harmonic scales. While the simplest characterizations of these data are not new, the systematic tracking of scale-specific roughness as a function of processing is new and offers feedback for tighter process prescriptions more knowledgably targeted at beneficial niobium topography for superconducting radio frequency applications.« less