Concordant plutonium-241-americium-241 dating of environmental samples: results from forest fire ash
- Los Alamos National Laboratory
We have measured the Pu, {sup 237}Np, {sup 241}Am, and {sup 151}Sm isotopic systematics for a set of forest fire ash samples from various locations in the western U.S. including Montana, Wyoming, Idaho, and New Mexico. The goal of this study is to develop a concordant {sup 241}Pu (t{sub 1/2} = 14.4 y)-{sup 241}Am dating method for environmental collections. Environmental samples often contain mixtures of components including global fallout. There are a number of approaches for subtracting the global fallout component for such samples. One approach is to use {sup 242}/{sup 239}Pu as a normalizing isotope ratio in a three-isotope plot, where this ratio for the nonglobal fallout component can be estimated or assumed to be small. This study investigates a new, complementary method of normalization using the long-lived fission product, {sup 151}Sm (t{sub 1/2} = 90 y). We find that forest fire ash concentrates actinides and fission products with {approx}1E10 atoms {sup 239}Pu/g and {approx}1E8 atoms {sup 151}Sm/g, allowing us to measure these nuclides by mass spectrometric (MIC-TIMS) and radiometric (liquid scintillation counting) methods. The forest fire ash samples are characterized by a western U.S. regional isotopic signature representing varying mixtures of global fallout with a local component from atmospheric testing of nuclear weapons at the Nevada Test Site (NTS). Our results also show that {sup 151}Sm is well correlated with the Pu nuclides in the forest fire ash, suggesting that these nuclides have similar geochemical behavior in the environment. Results of this correlation indicate that the {sup 151}Sm/{sup 239}Pu atom ratio for global fallout is {approx}0.164, in agreement with an independent estimate of 0.165 based on {sup 137}Cs fission yields for atmospheric weapons tests at the NTS. {sup 241}Pu-{sup 241}Am dating of the non-global fallout component in the forest fire ash samples yield ages in the late 1950's-early 1960's, consistent with a peak in NTS weapons testing at that time. The age results for this component are in agreement using both {sup 242}Pu and {sup 151}Sm normalizations, although the errors for the {sup 151}Sm correction are currently larger due to the greater uncertainty of their measurements. Additional efforts to develop a concordant {sup 241}Pu-{sup 241}Am dating method for environmental collections are underway with emphasis on soil cores.
- Research Organization:
- Los Alamos National Laboratory (LANL)
- Sponsoring Organization:
- DOE
- DOE Contract Number:
- AC52-06NA25396
- OSTI ID:
- 1043449
- Report Number(s):
- LA-UR-10-08109; LA-UR-10-8109
- Country of Publication:
- United States
- Language:
- English
Similar Records
Half-lives of the spontaneous fission of /sup 239/Pu and /sup 241/Pu
Review of fast-neutron capture cross sections of the higher plutonium isotopes and Am-241
Related Subjects
58 GEOSCIENCES
ACTINIDES
AGE ESTIMATION
AMERICIUM 241
ASHES
ENVIRONMENTAL MATERIALS
FIRES
FISSION PRODUCTS
FISSION YIELD
FORESTS
GLOBAL FALLOUT
ISOTOPE DATING
ISOTOPE RATIO
MASS SPECTROSCOPY
MEETINGS
NEPTUNIUM 237
PLUTONIUM
PLUTONIUM 242
RADIOMETRIC ANALYSIS
SAMARIUM 151
SAMPLE PREPARATION
SCINTILLATION COUNTING
SOILS
TESTING