Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Structures of the Michaelis Complex (1.2A) and the Covalent Acyl Intermediate (2.0A ) of Cefamandole Bound in the Active Sites of the Mycobacterium tuberculosis beta-Lactamase K72A and E166A Mutants

Journal Article · · Biochemistry (Eaton)
OSTI ID:1041949

The genome of Mycobacterium tuberculosis (TB) contains a gene that encodes a highly active {beta}-lactamase, BlaC, that imparts TB with resistance to {beta}-lactam chemotherapy. The structure of covalent BlaC-{beta}-lactam complexes suggests that active site residues K73 and E166 are essential for acylation and deacylation, respectively. We have prepared the K73A and E166A mutant forms of BlaC and have determined the structures of the Michaelis complex of cefamandole and the covalently bound acyl intermediate of cefamandole at resolutions of 1.2 and 2.0 {angstrom}, respectively. These structures provide insight into the details of the catalytic mechanism.

Research Organization:
BROOKHAVEN NATIONAL LABORATORY (BNL)
Sponsoring Organization:
USDOE SC OFFICE OF SCIENCE (SC)
DOE Contract Number:
AC02-98CH10886
OSTI ID:
1041949
Report Number(s):
BNL--97627-2012-JA
Journal Information:
Biochemistry (Eaton), Journal Name: Biochemistry (Eaton) Journal Issue: 45 Vol. 49; ISSN 0006-2960; ISSN BICHAW
Country of Publication:
United States
Language:
English