skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Oxidation State of Fe in MORB Glasses and the Oxygen Fugacity of the Upper Mantle

Journal Article · · Earth and Planetary Science Letters

Micro-analytical determination of Fe{sup 3+}/{Sigma}Fe ratios in mid-ocean ridge basalt (MORB) glasses using micro X-ray absorption near edge structure ({mu}-XANES) spectroscopy reveals a substantially more oxidized upper mantle than determined by previous studies. Here, we show that global MORBs yield average Fe{sup 3+}/{Sigma}Fe ratios of 0.16 {+-} 0.01 (n = 103), which trace back to primary MORB melts equilibrated at the conditions of the quartz-fayalite-magnetite (QFM) buffer. Our results necessitate an upward revision of the Fe{sup 3+}/{Sigma}Fe ratios of MORBs, mantle oxygen fugacity, and the ferric iron content of the mantle relative to previous wet chemical determinations. We show that only 0.01 (absolute, or < 10%) of the difference between Fe{sup 3+}/{Sigma}Fe ratios determined by micro-colorimety and XANES can be attributed to the Moessbauer-based XANES calibration. The difference must instead derive from a bias between micro-colorimetry performed on experimental vs. natural basalts. Co-variations of Fe{sup 3+}/{Sigma}Fe ratios in global MORB with indices of low-pressure fractional crystallization are consistent with Fe{sup 3+} behaving incompatibly in shallow MORB magma chambers. MORB Fe{sup 3+}/{Sigma}Fe ratios do not, however, vary with indices of the extent of mantle melting (e.g., Na{sub 2}O(8)) or water concentration. We offer two hypotheses to explain these observations: The bulk partition coefficient of Fe{sup 3+} may be higher during peridotite melting than previously thought, and may vary with temperature, or redox exchange between sulfide and sulfate species could buffer mantle melting at {approx} QFM. Both explanations, in combination with the measured MORB Fe{sup 3+}/{Sigma}Fe ratios, point to a fertile MORB source with greater than 0.3 wt.% Fe{sub 2}O{sub 3}.

Research Organization:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Organization:
USDOE SC OFFICE OF SCIENCE (SC)
DOE Contract Number:
DE-AC02-98CH10886
OSTI ID:
1041832
Report Number(s):
BNL-97510-2012-JA; EPSLA2; TRN: US201212%%244
Journal Information:
Earth and Planetary Science Letters, Vol. 305, Issue 4-Mar; ISSN 0012-821X
Country of Publication:
United States
Language:
English