Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Improving Electrocatalysts for O2 Reduction by Fine-Tuning the Pt-Support Interaction: Pt Monolayer on the Surfaces of a Pd3Fe(111) Single-Crystal Alloy

Journal Article · · Journal of American Chemical Society
DOI:https://doi.org/10.1021/ja9039746· OSTI ID:1040229
We improved the effectiveness of Pt monolayer electrocatalysts for the oxygen-reduction reaction (ORR) using a novel approach to fine-tuning the Pt monolayer interaction with its support, exemplified by an annealed Pd{sub 3}Fe(111) single-crystal alloy support having a segregated Pd layer. Low-energy ion scattering and low-energy electron diffraction studies revealed that a segregated Pd layer, with the same structure as Pd (111), is formed on the surface of high-temperature-annealed Pd{sub 3}Fe(111). This Pd layer is considerably more active than Pd(111); its ORR kinetics is comparable to that of a Pt(111) surface. The enhanced catalytic activity of the segregated Pd layer compared to that of bulk Pd apparently reflects the modification of Pd surface's electronic properties by underlying Fe. The Pd{sub 3}Fe(111) suffers a large loss in ORR activity when the subsurface Fe is depleted by potential cycling (i.e., repeated excursions to high potentials in acid solutions). The Pd{sub 3}Fe(111) surface is an excellent substrate for a Pt monolayer ORR catalyst, as verified by its enhanced ORR kinetics on PT{sub ML}/Pd/Pd{sub 3}Fe(111). Our density functional theory studies suggest that the observed enhancement of ORR activity originates mainly from the destabilization of OH binding and the decreased Pt-OH coverage on the Pt/Pd/Pd{sub 3}Fe(111) surface. The activity of Pt{sub ML}/Pd(111) and Pt(111) is limited by OH removal, whereas the activity of Pt{sub ML}/Pd/Pd{sub 3}Fe(111) is limited by the O-O bond scission, which places these two surfaces on the two sides of the volcano plot.
Research Organization:
Brookhaven National Laboratory (BNL) Center for Functional Nanomaterials
Sponsoring Organization:
USDOE SC OFFICE OF SCIENCE (SC)
DOE Contract Number:
AC02-98CH10886
OSTI ID:
1040229
Report Number(s):
BNL--90669-2009-JA; KC0302040
Journal Information:
Journal of American Chemical Society, Journal Name: Journal of American Chemical Society Journal Issue: 35 Vol. 131; ISSN 0002-7863
Country of Publication:
United States
Language:
English