Tunable Aqueous Virtual Micropore
- ORNL
- Yale University
A charged microparticle can be trapped in an aqueous environment by forming a narrow virtual pore - a cylindrical space region in which the particle motion in the radial direction is limited by forces emerging from dynamical interactions of the particle charge and dipole moment with an external radiofrequency quadrupole electric field. If the particle satisfies the trap stability criteria, its mean motion is reduced exponentially with time due to the viscosity of the aqueous environment; thereafter the long-time motion of particle is subject only to random, Brownian fluctuations, whose magnitude, influenced by the electrophoretic and dielectrophoretic effects and added to the particle size, determines the radius of the virtual pore, which is demonstrated by comparison of computer simulations and experiment. The measured size of the virtual nanopore could be utilized to estimate the charge of a trapped micro-object.
- Research Organization:
- Oak Ridge National Laboratory (ORNL)
- Sponsoring Organization:
- SC USDOE - Office of Science (SC)
- DOE Contract Number:
- AC05-00OR22725
- OSTI ID:
- 1038515
- Journal Information:
- Small, Journal Name: Small Journal Issue: 6 Vol. 8; ISSN 1613-6810
- Country of Publication:
- United States
- Language:
- English
Similar Records
Control of Screening of a Charged Particle in Electrolytic Aqueous Paul Trap
Control Of Screening Of A Charged Particle In Electrolytic Aqueous Paul Trap