Coherent Synchrotron Radiation: Theory and Simulations.
The physics of coherent synchrotron radiation (CSR) emitted by ultra-relativistic electron bunches, known since the last century, has become increasingly important with the development of high peak current free electron lasers and shorter bunch lengths in storage rings. Coherent radiation can be described as a low frequency part of the familiar synchrotron radiation in bending magnets. As this part is independent of the electron energy, the fields of different electrons of a short bunch can be in phase and the total power of the radiation will be quadratic with the number of electrons. Naturally the frequency spectrum of the longitudinal electron distribution in a bunch is of the same importance as the overall electron bunch length. The interest in the utilization of high power radiation from the terahertz and far infrared region in the field of chemical, physical and biological processes has led synchrotron radiation facilities to pay more attention to the production of coherent radiation. Several laboratories have proposed the construction of a facility wholly dedicated to terahertz production using the coherent radiation in bending magnets initiated by the longitudinal instabilities in the ring. Existing synchrotron radiation facilities also consider such a possibility among their future plans. There is a beautiful introduction to CSR in the 'ICFA Beam Dynamics Newsletter' N 35 (Editor C. Biscari). In this paper we recall the basic properties of CSR from the theory and what new effects, we can get from the precise simulations of the coherent radiation using numerical solutions of Maxwell's equations. In particular, transverse variation of the particle energy loss in a bunch, discovered in these simulations, explains the slice emittance growth in bending magnets of the bunch compressors and transverse de-coherence in undulators. CSR may play same the role as the effect of quantum fluctuations of synchrotron radiation in damping rings. It can limit the minimum achievable emittance in the synchrotron light sources for short bunches.
- Research Organization:
- SLAC National Accelerator Laboratory (SLAC)
- Sponsoring Organization:
- USDOE
- DOE Contract Number:
- AC02-76SF00515
- OSTI ID:
- 1037596
- Report Number(s):
- SLAC-PUB-14893
- Journal Information:
- Submitted to ICFA Beam Dynamics Newsletter, Journal Name: Submitted to ICFA Beam Dynamics Newsletter
- Country of Publication:
- United States
- Language:
- English
Similar Records
Measurements of Coherent Synchrotron Radiation and its Impact on the LCLS Electron Beam
Measurements and Modeling of Coherent Synchrotron Radiation and its Impact on the LCLS Electron Beam