Microbes in thawing permafrost: the unknown variable in the climate change equation
Journal Article
·
· The ISME Journal: Multidisciplinary Journal of Microbial Ecology
- ORNL
- Colorado State University, Fort Collins
- University of Tennessee, Knoxville (UTK)
- U.S. Geological Survey, Menlo Park, CA
- Princeton University
- McGill University, Montreal, Quebec
- Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences
- U.S. Department of Energy, Joint Genome Institute
- Alfred Wegener Institute for Polar and Marine Research, Potsdam, Germany
- Lawrence Berkeley National Laboratory (LBNL)
Considering that 25% of Earth s terrestrial surface is underlain by permafrost (ground that has been continuously frozen for at least 2 years), our understanding of the diversity of microbial life in this extreme habitat is surprisingly limited. Taking into account the total mass of perennially frozen sediment (up to several hundred meters deep), permafrost contains a huge amount of buried, ancient organic carbon (Tarnocai et al., 2009). In addition, permafrost is warming rapidly in response to global climate change (Romanovsky et al., 2010), potentially leading to widespread thaw and a larger, seasonally thawed soil active layer. This concern has prompted the question: will permafrost thawing lead to the release of massive amounts of carbon dioxide (CO2) and methane (CH4) into the atmosphere? This question can only be answered by understanding how the microbes residing in permafrost will respond to thaw, through processes such as respiration, fermentation, methanogenesis and CH4 oxidation (Schuur et al., 2009). Predicting future carbon fluxes is complicated by the diversity of permafrost environments, ranging from high mountains, southern boreal forests, frozen peatlands and Pleistocene ice complexes (yedoma) up to several hundred meters deep, which vary widely in soil composition, soil organic matter (SOM) quality, hydrology and thermal regimes (Figure 1). Permafrost degradation can occur in many forms: thaw can progress downward from seasonally-thawed active layer soils in warming climates or laterally because of changes in surface or groundwater flow paths (Grosse et al., 2011). Permafrost degradation can sometimes lead to dramatic changes in ecosystem structure and function
- Research Organization:
- Oak Ridge National Laboratory (ORNL)
- Sponsoring Organization:
- SC USDOE - Office of Science (SC)
- DOE Contract Number:
- AC05-00OR22725
- OSTI ID:
- 1037130
- Journal Information:
- The ISME Journal: Multidisciplinary Journal of Microbial Ecology, Journal Name: The ISME Journal: Multidisciplinary Journal of Microbial Ecology Journal Issue: 4 Vol. 6; ISSN 1751-7362
- Country of Publication:
- United States
- Language:
- English
Similar Records
Permafrost Meta-Omics and Climate Change
Microbes in Thawing Permafrost: The Unknown Variable in the Climate Change Equation
Effects of Rapid Permafrost Thaw on CO2 and CH4 Fluxes in a Warmer and Wetter Future (Final Technical Report)
Journal Article
·
Wed Jun 29 00:00:00 EDT 2016
· Annual Review of Earth and Planetary Sciences
·
OSTI ID:1326138
Microbes in Thawing Permafrost: The Unknown Variable in the Climate Change Equation
Journal Article
·
Sat Dec 31 23:00:00 EST 2011
· The ISME Journal: Multidisciplinary Journal of Microbial Ecology
·
OSTI ID:1037020
Effects of Rapid Permafrost Thaw on CO2 and CH4 Fluxes in a Warmer and Wetter Future (Final Technical Report)
Technical Report
·
Thu Jan 18 23:00:00 EST 2024
·
OSTI ID:2281887