Robust emergent climate phenomena associated with the high-sensitivity tail.
Because the potential effects of climate change are more severe than had previously been thought, increasing focus on uncertainty quantification is required for risk assessment needed by policy makers. Current scientific efforts focus almost exclusively on establishing best estimates of future climate change. However, the greatest consequences occur in the extreme tail of the probability density functions for climate sensitivity (the 'high-sensitivity tail'). To this end, we are exploring the impacts of newly postulated, highly uncertain, but high-consequence physical mechanisms to better establish the climate change risk. We define consequence in terms of dramatic change in physical conditions and in the resulting socioeconomic impact (hence, risk) on populations. Although we are developing generally applicable risk assessment methods, we have focused our initial efforts on uncertainty and risk analyses for the Arctic region. Instead of focusing on best estimates, requiring many years of model parameterization development and evaluation, we are focusing on robust emergent phenomena (those that are not necessarily intuitive and are insensitive to assumptions, subgrid-parameterizations, and tunings). For many physical systems, under-resolved models fail to generate such phenomena, which only develop when model resolution is sufficiently high. Our ultimate goal is to discover the patterns of emergent climate precursors (those that cannot be predicted with lower-resolution models) that can be used as a 'sensitivity fingerprint' and make recommendations for a climate early warning system that would use satellites and sensor arrays to look for the various predicted high-sensitivity signatures. Our initial simulations are focused on the Arctic region, where underpredicted phenomena such as rapid loss of sea ice are already emerging, and because of major geopolitical implications associated with increasing Arctic accessibility to natural resources, shipping routes, and strategic locations. We anticipate that regional climate will be strongly influenced by feedbacks associated with a seasonally ice-free Arctic, but with unknown emergent phenomena.
- Research Organization:
- Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States)
- Sponsoring Organization:
- USDOE
- DOE Contract Number:
- AC04-94AL85000
- OSTI ID:
- 1035994
- Report Number(s):
- SAND2010-8640C; TRN: US201205%%544
- Resource Relation:
- Conference: Proposed for presentation at the 2010 American Geophysical Union (AGU) Fall Meeting held December 13-17, 2010 in San Francisco, CA.
- Country of Publication:
- United States
- Language:
- English
Similar Records
Modeling the Spatio-Temporal Variability in Subsurface Thermal Regimes Across a Low-Relief Polygonal Tundra Landscape: Modeling Archive
Arctic Tipping Points Triggering Global Change (LDRD Final Report)