skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Unmanned air vehicle (UAV) ultra-persitence research

Program Document ·
OSTI ID:1035837

Sandia National Laboratories and Northrop Grumman Corporation Integrated Systems, Unmanned Systems (NGIS UMS) collaborated to further ultra-persistence technologies for unmanned air vehicles (UAVs). The greatest shortfalls in UAV capabilities have been repeatedly identified as (1) insufficient flight persistence or 'hang time,' (2) marginal electrical power for running higher power avionics and payload systems, and (3) inadequate communications bandwidth and reach. NGIS UMS requested support from Sandia to develop an ultra-persistent propulsion and power system (UP3S) for potential incorporation into next generation UAV systems. The team members tried to determine which energy storage and power generation concepts could most effectively push UAV propulsion and electrical power capabilities to increase UAV sortie duration from days to months while increasing available electrical power at least two-fold. Primary research and development areas that were pursued included these goals: perform general system engineering and integration analyses; develop initial thermal and electrical power estimates; provide mass, volume, dimensional, and balance estimates; conduct preliminary safety assessments; assess logistics support requirements; perform, preliminary assessments of any security and safeguards; evaluate options for removal, replacement, and disposition of materials; generally advance the potential of the UP3S concept. The effort contrasted and compared eight heat sources technologies, three power conversion, two dual cycle propulsion system configurations, and a single electrical power generation scheme. Overall performance, specific power parameters, technical complexities, security, safety, and other operational features were successfully investigated. Large and medium sized UAV systems were envisioned and operational flight profiles were developed for each concept. Heat source creation and support challenges for domestic and expeditionary operations were considered. Fundamental cost driver analysis was also performed. System development plans were drafted in order to determine where the technological and programmatic critical paths lay. As a result of this effort, UAVs were to be able to provide far more surveillance time and intelligence information per mission while reducing the high cost of support activities. This technology was intended to create unmatched global capabilities to observe and preempt terrorist and weapon of mass destruction (WMD) activities. Various DOE laboratory and contractor personnel and facilities could have been used to perform detailed engineering, fabrication, assembly and test operations including follow-on operational support. Unfortunately, none of the results will be used in the near-term or mid-term future. NGIS UMS and SNL felt that the technical goals for the project were accomplished. NGIS UMS was quite pleased with the results of analysis and design although it was disappointing to all that the political realities would not allow use of the results. Technology and system designs evaluated under this CRADA had previously never been applied to unmanned air vehicles (UAVs). Based upon logistic support cost predictions, because the UAVs would not have had to refuel as often, forward basing support costs could have been reduced due to a decrease in the number and extent of support systems and personnel being required to operate UAVs in remote areas. Basic application of the advanced propulsion and power approach is well understood and industry now understands the technical, safety, and political issues surrounding implementation of these strategies. However, the overall economic impact was not investigated. The results will not be applied/implemented. No near-term benefit to industry or the taxpayer will be encountered as a result of these studies.

Research Organization:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
DE-AC04-94AL85000
OSTI ID:
1035837
Report Number(s):
SAND2012-1676P; TRN: US201205%%448
Country of Publication:
United States
Language:
English