skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Crystallographic Analysis of Active Site Contributions to Regiospecificity in the Diiron Enzyme Toluene 4-Monooxygenase

Abstract

Crystal structures of toluene 4-monooxygenase hydroxylase in complex with reaction products and effector protein reveal active site interactions leading to regiospecificity. Complexes with phenolic products yield an asymmetric {mu}-phenoxo-bridged diiron center and a shift of diiron ligand E231 into a hydrogen bonding position with conserved T201. In contrast, complexes with inhibitors p-NH{sub 2}-benzoate and p-Br-benzoate showed a {mu}-1,1 coordination of carboxylate oxygen between the iron atoms and only a partial shift in the position of E231. Among active site residues, F176 trapped the aromatic ring of products against a surface of the active site cavity formed by G103, E104 and A107, while F196 positioned the aromatic ring against this surface via a {pi}-stacking interaction. The proximity of G103 and F176 to the para substituent of the substrate aromatic ring and the structure of G103L T4moHD suggest how changes in regiospecificity arise from mutations at G103. Although effector protein binding produced significant shifts in the positions of residues along the outer portion of the active site (T201, N202, and Q228) and in some iron ligands (E231 and E197), surprisingly minor shifts (<1 {angstrom}) were produced in F176, F196, and other interior residues of the active site. Likewise, products bound to themore » diiron center in either the presence or absence of effector protein did not significantly shift the position of the interior residues, suggesting that positioning of the cognate substrates will not be strongly influenced by effector protein binding. Thus, changes in product distributions in the absence of the effector protein are proposed to arise from differences in rates of chemical steps of the reaction relative to motion of substrates within the active site channel of the uncomplexed, less efficient enzyme, while structural changes in diiron ligand geometry associated with cycling between diferrous and diferric states are discussed for their potential contribution to product release.« less

Authors:
; ; ; ; ;  [1]
  1. (UW)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
National Science Foundation (NSF)
OSTI Identifier:
1035385
Resource Type:
Journal Article
Resource Relation:
Journal Name: Biochemistry-US; Journal Volume: 51; Journal Issue: (6) ; 02, 2012
Country of Publication:
United States
Language:
ENGLISH
Subject:
08 HYDROGEN; AROMATICS; ATOMS; BONDING; CRYSTAL STRUCTURE; ENZYMES; GEOMETRY; HYDROGEN; HYDROXYLASES; IRON; MUTATIONS; OXYGEN; POSITIONING; PROTEINS; RESIDUES; SUBSTRATES; TOLUENE

Citation Formats

Bailey, Lucas J., Acheson, Justin F., McCoy, Jason G., Elsen, Nathaniel L., Phillips, Jr., George N., and Fox, Brian G.. Crystallographic Analysis of Active Site Contributions to Regiospecificity in the Diiron Enzyme Toluene 4-Monooxygenase. United States: N. p., 2014. Web. doi:10.1021/bi2018333.
Bailey, Lucas J., Acheson, Justin F., McCoy, Jason G., Elsen, Nathaniel L., Phillips, Jr., George N., & Fox, Brian G.. Crystallographic Analysis of Active Site Contributions to Regiospecificity in the Diiron Enzyme Toluene 4-Monooxygenase. United States. doi:10.1021/bi2018333.
Bailey, Lucas J., Acheson, Justin F., McCoy, Jason G., Elsen, Nathaniel L., Phillips, Jr., George N., and Fox, Brian G.. 2014. "Crystallographic Analysis of Active Site Contributions to Regiospecificity in the Diiron Enzyme Toluene 4-Monooxygenase". United States. doi:10.1021/bi2018333.
@article{osti_1035385,
title = {Crystallographic Analysis of Active Site Contributions to Regiospecificity in the Diiron Enzyme Toluene 4-Monooxygenase},
author = {Bailey, Lucas J. and Acheson, Justin F. and McCoy, Jason G. and Elsen, Nathaniel L. and Phillips, Jr., George N. and Fox, Brian G.},
abstractNote = {Crystal structures of toluene 4-monooxygenase hydroxylase in complex with reaction products and effector protein reveal active site interactions leading to regiospecificity. Complexes with phenolic products yield an asymmetric {mu}-phenoxo-bridged diiron center and a shift of diiron ligand E231 into a hydrogen bonding position with conserved T201. In contrast, complexes with inhibitors p-NH{sub 2}-benzoate and p-Br-benzoate showed a {mu}-1,1 coordination of carboxylate oxygen between the iron atoms and only a partial shift in the position of E231. Among active site residues, F176 trapped the aromatic ring of products against a surface of the active site cavity formed by G103, E104 and A107, while F196 positioned the aromatic ring against this surface via a {pi}-stacking interaction. The proximity of G103 and F176 to the para substituent of the substrate aromatic ring and the structure of G103L T4moHD suggest how changes in regiospecificity arise from mutations at G103. Although effector protein binding produced significant shifts in the positions of residues along the outer portion of the active site (T201, N202, and Q228) and in some iron ligands (E231 and E197), surprisingly minor shifts (<1 {angstrom}) were produced in F176, F196, and other interior residues of the active site. Likewise, products bound to the diiron center in either the presence or absence of effector protein did not significantly shift the position of the interior residues, suggesting that positioning of the cognate substrates will not be strongly influenced by effector protein binding. Thus, changes in product distributions in the absence of the effector protein are proposed to arise from differences in rates of chemical steps of the reaction relative to motion of substrates within the active site channel of the uncomplexed, less efficient enzyme, while structural changes in diiron ligand geometry associated with cycling between diferrous and diferric states are discussed for their potential contribution to product release.},
doi = {10.1021/bi2018333},
journal = {Biochemistry-US},
number = (6) ; 02, 2012,
volume = 51,
place = {United States},
year = 2014,
month =
}
  • At its carboxylate-bridged diiron active site, the hydroxylase component of toluene/o-xylene monooxygenase activates dioxygen for subsequent arene hydroxylation. In an I100W variant of this enzyme, we characterized the formation and decay of two species formed by addition of dioxygen to the reduced, diiron(II) state by rapid-freeze quench (RFQ) EPR, Moessbauer, and ENDOR spectroscopy. The dependence of the formation and decay rates of this mixed-valent transient on pH and the presence of phenol, propylene, or acetylene was investigated by double-mixing stopped-flow optical spectroscopy. Modification of the {alpha}-subunit of the hydroxylase after reaction of the reduced protein with dioxygen-saturated buffer was investigatedmore » by tryptic digestion coupled mass spectrometry. From these investigations, we conclude that (i) a diiron(III,IV)-W{sup {sm_bullet}} transient, kinetically linked to a preceding diiron(III) intermediate, arises from the one-electron oxidation of W100, (ii) the tryptophan radical is deprotonated, (iii) rapid exchange of either a terminal water or hydroxide ion with water occurs at the ferric ion in the diiron(III,IV) cluster, and (iv) the diiron(III,IV) core and W{sup {sm_bullet}} decay to the diiron(III) product by a common mechanism. No transient radical was observed by stopped-flow optical spectroscopy for reactions of the reduced hydroxylase variants I100Y, L208F, and F205W with dioxygen. The absence of such species, and the deprotonated state of the tryptophanyl radical in the diiron(III,IV)-W{sup {sm_bullet}} transient, allow for a conservative estimate of the reduction potential of the diiron(III) intermediate as lying between 1.1 and 1.3 V. We also describe the X-ray crystal structure of the I100W variant of ToMOH.« less
  • The active site residue Thr-201 in toluene 4-monooxygenase hydroxylase (T4moH) has a structural counterpart in the active sites of all diiron monooxygenases. Thus, our previous finding that mutation of this residue to Ala, Gly, or Ser had no impact on steady-state catalysis or coupling was surprising. In this work, we provide kinetic, biochemical, and structural evidence that one role of Thr-201 may be to stabilize a peroxo-level intermediate during enzyme catalysis. During reactions in the absence of substrate, T201 T4moH slowly consumed O{sub 2} but only a negligible amount of H{sub 2}O{sub 2} was released. In contrast, T201A T4moH gavemore » stoichometric release of H{sub 2}O{sub 2} during reaction in the absence of substrate. Both enzyme isoforms were tightly coupled during steady-state catalysis with saturating toluene and other optimal substrates and exhibited near-identical kinetic parameters. However, rapid mix single-turnover studies showed that T201A T4moH had a faster first-order rate constant for product formation than T201 T4moH did. Comparison of X-ray crystal structures of resting and reduced T201A T4moH in complex with T4moD with comparable structures of T201 T4moHD revealed changes in the positions of several key active site residues relative to the comparable structures of T201 T4moH with T4moD. This combination of catalytic and structural studies offers important new insight into the role of the role of conserved Thr-201, and its contributions to the catalytic reaction cycle.« less
  • The interaction among the hydroxylase component of methane monooxygenase (MMO) from Methylococcus capsulatus (Bath), the coupling protein of the MMO enzyme system (component B), and substrate has been investigated by using Fe K-edge X-ray absorption spectroscopy (XAS). Fe K-edge extended X-ray absorption fine structure (EXAFS) studies of the semimet form of the hydroxylase in the presence of the coupling protein, 1-bromo-1-propene, and both the coupling protein and 1-bromo-1-propene revealed small differences in the appearance of the EXAFS above k = 8 {Angstrom}{sup {minus}1} as compared to the noncomplexed hydroxylase. No dramatic change in the Fe coordination was seen in fitsmore » to the data. The average first shell Fe-O/N distance for the complexed forms of the semimet hydroxylase ranged between 2.06 and 2.08 {Angstrom}, which is comparable to the distance found for the noncomplexed form, 2.06-2.09 {Angstrom}. Although the average first shell coordination was similar for all samples, a difference was seen in the distribution of long vs short distance contributions to the first shell coordination sphere for samples with component B present. This difference was accompanied by a small but consistent decrease in the Fe-Fe distance of the B-complexed hydroxylase samples, from 3.42 to 3.39 {angstrom}.« less