skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: New density functional theory approaches for enabling prediction of chemical and physical properties of plutonium and other actinides.

Abstract

Density Functional Theory (DFT) based Equation of State (EOS) construction is a prominent part of Sandia's capabilities to support engineering sciences. This capability is based on amending experimental data with information gained from computational investigations, in parts of the phase space where experimental data is hard, dangerous, or expensive to obtain. A prominent materials area where such computational investigations are hard to perform today because of limited accuracy is actinide and lanthanide materials. The Science of Extreme Environment Lab Directed Research and Development project described in this Report has had the aim to cure this accuracy problem. We have focused on the two major factors which would allow for accurate computational investigations of actinide and lanthanide materials: (1) The fully relativistic treatment needed for materials containing heavy atoms, and (2) the needed improved performance of DFT exchange-correlation functionals. We have implemented a fully relativistic treatment based on the Dirac Equation into the LANL code RSPt and we have shown that such a treatment is imperative when calculating properties of materials containing actinides and/or lanthanides. The present standard treatment that only includes some of the relativistic terms is not accurate enough and can even give misleading results. Compared to calculations previouslymore » considered state of the art, the Dirac treatment gives a substantial change in equilibrium volume predictions for materials with large spin-orbit coupling. For actinide and lanthanide materials, a Dirac treatment is thus a fundamental requirement in any computational investigation, including those for DFT-based EOS construction. For a full capability, a DFT functional capable of describing strongly correlated systems such as actinide materials need to be developed. Using the previously successful subsystem functional scheme developed by Mattsson et.al., we have created such a functional. In this functional the Harmonic Oscillator Gas is providing the necessary reference system for the strong correlation and localization occurring in actinides. Preliminary testing shows that the new Hao-Armiento-Mattsson (HAM) functional gives a trend towards improved results for the crystalline copper oxide test system we have chosen. This test system exhibits the same exchange-correlation physics as the actinide systems do, but without the relativistic effects, giving access to a pure testing ground for functionals. During the work important insights have been gained. An example is that currently available functionals, contrary to common belief, make large errors in so called hybridization regions where electrons from different ions interact and form new states. Together with the new understanding of functional issues, the Dirac implementation into the RSPt code will permit us to gain more fundamental understanding, both quantitatively and qualitatively, of materials of importance for Sandia and the rest of the Nuclear Weapons complex.« less

Authors:
Publication Date:
Research Org.:
Sandia National Laboratories
Sponsoring Org.:
USDOE
OSTI Identifier:
1034888
Report Number(s):
SAND2011-9457
TRN: US201205%%27
DOE Contract Number:  
AC04-94AL85000
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ACCURACY; ACTINIDES; ATOMS; COPPER OXIDES; DIRAC EQUATION; ELECTRONS; EQUATIONS OF STATE; DENSITY FUNCTIONAL METHOD; HARMONIC OSCILLATORS; HYBRIDIZATION; IMPLEMENTATION; LANL; NUCLEAR WEAPONS; PERFORMANCE; PHASE SPACE; PHYSICAL PROPERTIES; PHYSICS; PLUTONIUM; RARE EARTHS; TESTING

Citation Formats

Mattsson, Ann Elisabet. New density functional theory approaches for enabling prediction of chemical and physical properties of plutonium and other actinides.. United States: N. p., 2012. Web. doi:10.2172/1034888.
Mattsson, Ann Elisabet. New density functional theory approaches for enabling prediction of chemical and physical properties of plutonium and other actinides.. United States. https://doi.org/10.2172/1034888
Mattsson, Ann Elisabet. Sun . "New density functional theory approaches for enabling prediction of chemical and physical properties of plutonium and other actinides.". United States. https://doi.org/10.2172/1034888. https://www.osti.gov/servlets/purl/1034888.
@article{osti_1034888,
title = {New density functional theory approaches for enabling prediction of chemical and physical properties of plutonium and other actinides.},
author = {Mattsson, Ann Elisabet},
abstractNote = {Density Functional Theory (DFT) based Equation of State (EOS) construction is a prominent part of Sandia's capabilities to support engineering sciences. This capability is based on amending experimental data with information gained from computational investigations, in parts of the phase space where experimental data is hard, dangerous, or expensive to obtain. A prominent materials area where such computational investigations are hard to perform today because of limited accuracy is actinide and lanthanide materials. The Science of Extreme Environment Lab Directed Research and Development project described in this Report has had the aim to cure this accuracy problem. We have focused on the two major factors which would allow for accurate computational investigations of actinide and lanthanide materials: (1) The fully relativistic treatment needed for materials containing heavy atoms, and (2) the needed improved performance of DFT exchange-correlation functionals. We have implemented a fully relativistic treatment based on the Dirac Equation into the LANL code RSPt and we have shown that such a treatment is imperative when calculating properties of materials containing actinides and/or lanthanides. The present standard treatment that only includes some of the relativistic terms is not accurate enough and can even give misleading results. Compared to calculations previously considered state of the art, the Dirac treatment gives a substantial change in equilibrium volume predictions for materials with large spin-orbit coupling. For actinide and lanthanide materials, a Dirac treatment is thus a fundamental requirement in any computational investigation, including those for DFT-based EOS construction. For a full capability, a DFT functional capable of describing strongly correlated systems such as actinide materials need to be developed. Using the previously successful subsystem functional scheme developed by Mattsson et.al., we have created such a functional. In this functional the Harmonic Oscillator Gas is providing the necessary reference system for the strong correlation and localization occurring in actinides. Preliminary testing shows that the new Hao-Armiento-Mattsson (HAM) functional gives a trend towards improved results for the crystalline copper oxide test system we have chosen. This test system exhibits the same exchange-correlation physics as the actinide systems do, but without the relativistic effects, giving access to a pure testing ground for functionals. During the work important insights have been gained. An example is that currently available functionals, contrary to common belief, make large errors in so called hybridization regions where electrons from different ions interact and form new states. Together with the new understanding of functional issues, the Dirac implementation into the RSPt code will permit us to gain more fundamental understanding, both quantitatively and qualitatively, of materials of importance for Sandia and the rest of the Nuclear Weapons complex.},
doi = {10.2172/1034888},
url = {https://www.osti.gov/biblio/1034888}, journal = {},
number = ,
volume = ,
place = {United States},
year = {2012},
month = {1}
}