Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

GVT Algorithms and Discrete Event Dynamics on 128K+ Processor Cores

Conference ·
OSTI ID:1034668

Parallel discrete event simulation (PDES) represents a class of codes that are challenging to scale to large number of processors due to tight global timestamp-ordering and fine-grained event execution. One of the critical factors in scaling PDES is the efficiency of the underlying global virtual time (GVT) algorithm needed for correctness of parallel execution and speed of progress. Although many GVT algorithms have been proposed previously, few have been proposed for scalable asynchronous execution and none customized to exploit one-sided communication. Moreover, the detailed performance effects of actual GVT algorithm implementations on large platforms are unknown. Here, three major GVT algorithms intended for scalable execution on high-performance systems are studied: (1) a synchronous GVT algorithm that affords ease of implementation, (2) an asynchronous GVT algorithm that is more complex to implement but can relieve blocking latencies, and (3) a variant of the asynchronous GVT algorithm, proposed and studied for the first time here, to exploit one-sided communication in extant supercomputing platforms. Performance results are presented of implementations of these algorithms on over 64,000 cores of a Cray XT5 system, exercised on a range of parameters: optimistic and conservative synchronization, fine- to medium-grained event computation, synthetic and non-synthetic applications, and different lookahead values. Performance of tens of billions of events executed per second are registered, exceeding the speeds of any known PDES engine, and showing asynchronous GVT algorithms to outperform state-of-the-art synchronous GVT algorithms. Detailed PDES-specific runtime metrics are presented to further the understanding of tightly-coupled discrete event execution dynamics on massively parallel platforms.

Research Organization:
Oak Ridge National Laboratory (ORNL); Center for Computational Sciences
Sponsoring Organization:
ORNL LDRD Director's R&D
DOE Contract Number:
AC05-00OR22725
OSTI ID:
1034668
Country of Publication:
United States
Language:
English

Similar Records

Discrete Event Execution with One-Sided and Two-Sided GVT Algorithms on 216,000 Processor Cores
Journal Article · Tue Dec 31 23:00:00 EST 2013 · ACM Transactions on Modeling and Computer Simulation · OSTI ID:1132340

Scaling Time Warp-based Discrete Event Execution to 104 Processors on Blue Gene Supercomputer
Conference · Sun Dec 31 23:00:00 EST 2006 · OSTI ID:931733

Virtual Time III, Part 1: Unified Virtual Time Synchronization for Parallel Discrete Event Simulation
Journal Article · Tue Jan 10 23:00:00 EST 2023 · ACM Transactions on Modeling and Computer Simulation · OSTI ID:1986609