Seismic reflection imaging of underground cavities using open-source software
- Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
The Comprehensive Nuclear Test Ban Treaty (CTBT) includes provisions for an on-site inspection (OSI), which allows the use of specific techniques to detect underground anomalies including cavities and rubble zones. One permitted technique is active seismic surveys such as seismic refraction or reflection. The purpose of this report is to conduct some simple modeling to evaluate the potential use of seismic reflection in detecting cavities and to test the use of open-source software in modeling possible scenarios. It should be noted that OSI inspections are conducted under specific constraints regarding duration and logistics. These constraints are likely to significantly impact active seismic surveying, as a seismic survey typically requires considerable equipment, effort, and expertise. For the purposes of this study, which is a first-order feasibility study, these issues will not be considered. This report provides a brief description of the seismic reflection method along with some commonly used software packages. This is followed by an outline of a simple processing stream based on a synthetic model, along with results from a set of models representing underground cavities. A set of scripts used to generate the models are presented in an appendix. We do not consider detection of underground facilities in this work and the geologic setting used in these tests is an extremely simple one.
- Research Organization:
- Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
- Sponsoring Organization:
- USDOE
- DOE Contract Number:
- W-7405-ENG-48; AC52-07NA27344
- OSTI ID:
- 1034499
- Report Number(s):
- LLNL--TR-522174
- Country of Publication:
- United States
- Language:
- English
Similar Records
Numerical model of electromagnetic scattering off a subterranean 3-dimensional dielectric
Application of Active Seismic and Electrical Methods to Detect and Characterize Subsurface Effects of an Underground Explosion