Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries.
- Accelerator Systems Division (APS)
Tailoring nanoarchitecture of materials offers unprecedented opportunities in utilization of their functional properties. Nanostructures of vanadium oxide, synthesized by electrochemical deposition, are studied as a cathode material for rechargeable Na-ion batteries. Ex situ and in situ synchrotron characterizations revealed the presence of an electrochemically responsive bilayered structure with adjustable intralayer spacing that accommodates intercalation of Na{sup +} ions. Sodium intake induces organization of overall structure with appearance of both long- and short-range order, while deintercalation is accompanied with the loss of long-range order, whereas short-range order is preserved. Nanostructured electrodes achieve theoretical reversible capacity for Na{sub 2}V{sub 2}O{sub 5} stoichiometry of 250 mAh/g. The stability evaluation during charge-discharge cycles at room temperature revealed an efficient 3 V cathode material with superb performance: energy density of {approx}760 Wh/kg and power density of 1200 W/kg. These results demonstrate feasibility of development of the ambient temperature Na-ion rechargeable batteries by employment of electrodes with tailored nanoarchitectures.
- Research Organization:
- Argonne National Laboratory (ANL)
- Sponsoring Organization:
- SC; NSF
- DOE Contract Number:
- AC02-06CH11357
- OSTI ID:
- 1033865
- Report Number(s):
- ANL/CNM/JA-71728
- Journal Information:
- ACS Nano, Journal Name: ACS Nano Journal Issue: 1 Vol. 6; ISSN 1936-0851
- Country of Publication:
- United States
- Language:
- ENGLISH
Similar Records
Novel rechargeable sodium batteries
Prussian blue containing Nafion composite film as rechargeable battery