skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The XMM-BCS galaxy cluster survey: I. The X-ray selected cluster catalog from the initial 6 deg$^2$

Journal Article · · Submitted to Astron.Astrophys.
OSTI ID:1033327

The XMM-Newton - Blanco Cosmology Survey project (XMM-BCS) is a coordinated X-ray, optical and mid-infrared cluster survey in a field also covered by Sunyaev-Zel dovich effect (SZE) surveys by the South Pole Telescope and the Atacama Cosmology Telescope. The aim of the project is to study the cluster population in a 14 deg{sup 2} field (center: {alpha} {approx} 23:29:18.4, {delta} {approx} -54:40:33.6). The uniform multi-wavelength coverage will also allow us for the first time to comprehensively compare the selection function of the different cluster detection approaches in a single test field and perform a cross-calibration of cluster scaling relations. In this work, we present a catalog of 46 X-ray selected clusters from the initial 6 deg{sup 2} survey core.We describe the XMM-BCS source detection pipeline and derive physical properties of the clusters. We provide photometric redshift estimates derived from the BCS imaging data and spectroscopic redshift measurements for a low redshift subset of the clusters. The photometric redshift estimates are found to be unbiased and in good agreement with the spectroscopic values. Our multi-wavelength approach gives us a comprehensive look at the cluster and group population up to redshifts z {approx} 1. The median redshift of the sample is 0.47 and the median mass M{sub 500} {approx} 1 x 10{sup 14} M{sub {circle_dot}} ({approx} 2 keV). From the sample, we derive the cluster log N - log S using an approximation to the survey selection function and find it in good agreement with previous studies. We compare optical mass estimates from the Southern Cosmology Survey available for part of our cluster sample with our estimates derived from the X-ray luminosity. Weak lensing masses available for a subset of the cluster sample are in agreement with our estimates. Optical masses based on cluster richness and total optical luminosity are found to be significantly higher than the X-ray values. The present results illustrate the excellent potential of medium-deep, X-ray surveys to deliver cluster samples for cosmological modelling. In combination with available multi-wavelength data in optical, near-infrared and SZE, this will allow us to probe the dependence of the selection functions on relevant cluster observables and provide thus an important input for upcoming large-area multi-wavelength cluster surveys.

Research Organization:
Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
AC02-07CH11359
OSTI ID:
1033327
Report Number(s):
FERMILAB-PUB-11-683-AE; arXiv eprint number arXiv:1111.0141; TRN: US201202%%743
Journal Information:
Submitted to Astron.Astrophys., Journal Name: Submitted to Astron.Astrophys.
Country of Publication:
United States
Language:
English