skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Representation of Arctic Mixed-Phase clouds and the Wegener-Bergeron-Findeisen Process in Climate Models: Perspectives from a Cloud-Resolving Study

Journal Article · · Journal of Geophysical Research. D. (Atmospheres)
DOI:https://doi.org/10.1029/2010JD015375· OSTI ID:1029043

Two types of Arctic mixed-phase clouds observed during the ISDAC and M-PACE field campaigns are simulated using a 3-dimensional cloud-resolving model (CRM) with size-resolved cloud microphysics. The modeled cloud properties agree reasonably well with aircraft measurements and surface-based retrievals. Cloud properties such as the probability density function (PDF) of vertical velocity (w), cloud liquid and ice, the regime of ice growth at the expense of liquid water (i.e., Wegener-Bergeron-Findeisen (WBF) process), and the inherent relationships among cloud properties/processes in the mixed-phase layers are examined to gain insights for improving the representation of the mixed-phase processes in General Circulation Models (GCMs). We find that, the WBF process only occurs in about 50% of the mixed-phase regime with the vast majority occurring in the downdrafts. In updrafts both liquid and ice grow simultaneously. But in GCMs, it is not necessary to treat the WBF process at the subgrid scale. Our CRM results produce a w distribution well represented by a Gaussian normal function, validating, at least for arctic clouds, the subgrid treatment used in GCMs. Our CRM results also support the assumption frequently used in GCMs that mixed phase clouds maintain water vapor very near liquid saturation. A Gamma function with a fixed variance does not accurately represent the subgrid variability of cloud liquid. The PDFs of cloud liquid and cloud ice can be fitted with Gamma functions, and a normal function can be used for total water, but the variance should not be fixed. The relationship between the ice depositional growth rate and cloud ice strongly depends on the capacitance of ice particles. The assumption for the capacitance of ice particles (e.g., 1.0 for spheres) used in GCMs could lead to a large deviation in ice depositional growth. At large sales, the maximum overlap assumption looks appropriate.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1029043
Report Number(s):
PNNL-SA-76847; KP1703020; KP1701000; TRN: US201122%%674
Journal Information:
Journal of Geophysical Research. D. (Atmospheres), Vol. 116
Country of Publication:
United States
Language:
English