skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Comparison of Calculated and Measured Neutron Fluence in Fuel/Cladding Irradiation Experiments in HFIR

Conference ·
OSTI ID:1028752

A recently-designed thermal neutron irradiation facility has been used for a first series of irradiations of PWR fuel pellets in the high flux isotope reactor (HFIR) at Oak Ridge National Laboratory. Since June 2010, irradiations of PWR fuel pellets made of UN or UO{sub 2}, clad in SiC, have been ongoing in the outer small VXF sites in the beryllium reflector region of the HFIR, as seen in Fig. 1. HFIR is a versatile, 85 MW isotope production and test reactor with the capability and facilities for performing a wide variety of irradiation experiments. HFIR is a beryllium-reflected, light-water-cooled and -moderated, flux-trap type reactor that uses highly enriched (in {sup 235}U) uranium (HEU) as the fuel. The reactor core consists of a series of concentric annular regions, each about 2 ft (0.61 m) high. A 5-in. (12.70-cm)-diam hole, referred to as the flux trap, forms the center of the core. The fuel region is composed of two concentric fuel elements made up of many involute-shaped fuel plates: an inner element that contains 171 fuel plates, and an outer element that contains 369 fuel plates. The fuel plates are curved in the shape of an involute, which provides constant coolant channel width between plates. The fuel (U{sub 3}O{sub 8}-Al cermet) is nonuniformly distributed along the arc of the involute to minimize the radial peak-to-average power density ratio. A burnable poison (B{sub 4}C) is included in the inner fuel element primarily to reduce the negative reactivity requirements of the reactor control plates. A typical HEU core loading in HFIR is 9.4 kg of {sup 235}U and 2.8 g of {sup 10}B. The thermal neutron flux in the flux trap region can exceed 2.5 x 10{sup 15} n/cm{sup 2} {center_dot} s while the fast flux in this region exceeds 1 x 10{sup 15} n/cm{sup 2} {center_dot} s. The inner and outer fuel elements are in turn surrounded by a concentric ring of beryllium reflector approximately 1 ft (0.30 m) thick. The beryllium reflector consists of three regions: the removable reflector, the semi-permanent reflector, and the permanent reflector. It is surrounded by a water reflector of effectively infinite thickness. In the axial direction, the reactor is reflected by water above and below the reactor. The irradiation facilities, one for UN and the other for UO{sub 2} pellets, utilize a thin cylindrical hafnium shield approximately 4 cm in diameter surrounding the facility basket to reduce the thermal neutron flux sufficiently such that the linear power rating in the irradiated fuel pins will be similar to PWR operating conditions. The facilities each contain nine fuel pins, each comprising 10 fuel pellets, arranged as if three fuel rods.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR)
Sponsoring Organization:
Work for Others (WFO)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
1028752
Resource Relation:
Conference: 2011 ANS Winter Meeting, Washington, DC, USA, 20111030, 20111103
Country of Publication:
United States
Language:
English