Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Chapter 1 - The Impacts of X-Ray Absorption Spectroscopy on Understanding Soil Processes and Reaction Mechanisms

Book ·
During the last two decades, X-ray absorption spectroscopy (XAS) has developed into a mature technique for obtaining the speciation (e.g., oxidation state) and short-range structure of elements present in soils and sediments. XAS encompasses both X-ray absorption near-edge structure (XANES) spectroscopy and extended X-ray absorption fine structure (EXAFS) spectroscopy. XAS has a number of advantageous qualities for studying soils and sediments, which include elemental specificity, sensitivity to the local chemical and structural state of an element, and the ability to analyze materials in situ. This information allows accurate determination of oxidation state, type of nearest neighbors, coordination number, bond distance, and orbital symmetries of the X-ray absorbing element. In this review, we examine the application of a wide variety of synchrotron X-ray techniques to fundamental issues in environmental soil chemistry. Additionally, we examine the application of microfocused and time-resolved XAS to determine speciation (e.g., oxidation state and/or local coordination environment) and transformation kinetics of contaminants in heterogeneous environmental systems. During the last three decades, XAS has a played a critical role in furthering our understanding of a myriad of environmental systems and will continue to do so into the foreseeable future.
Research Organization:
Advanced Photon Source (APS), Argonne National Laboratory (ANL), Argonne, IL (US)
Sponsoring Organization:
NSF
OSTI ID:
1027645
Country of Publication:
United States
Language:
ENGLISH