Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Trace element cycling through iron oxide minerals during redox-driven dynamic recrystallization

Journal Article · · Geology
DOI:https://doi.org/10.1130/G32330.1· OSTI ID:1027145

Microbially driven iron redox cycling in soil and sedimentary systems, including during diagenesis and fluid migration, may activate secondary abiotic reactions between aqueous Fe(II) and solid Fe(III) oxides. These reactions catalyze dynamic recrystallization of iron oxide minerals through localized and simultaneous oxidative adsorption of Fe(II) and reductive dissolution of Fe(III). Redox-active trace elements undergo speciation changes during this process, but the impact redox-driven recrystallization has on redox-inactive trace elements associated with iron oxides is uncertain. Here we demonstrate that Ni is cycled through the minerals goethite and hematite during redox-driven recrystallization. X-ray absorption spectroscopy demonstrates that during this process adsorbed Ni becomes progressively incorporated into the minerals. Kinetic studies using batch reactors containing aqueous Fe(II) and Ni preincorporated into iron oxides display substantial release of Ni to solution. We conclude that iron oxide recrystallization activated by aqueous Fe(II) induces cycling of Ni through the mineral structure, with adsorbed Ni overgrown in regions of Fe(II) oxidative adsorption and incorporated Ni released in regions of reductive dissolution of structural Fe(III). The redistribution of Ni among the mineral bulk, mineral surface, and aqueous solution appears to be thermodynamically controlled and catalyzed by Fe(II). Our work suggests that important proxies for ocean composition on the early Earth may be invalid, identifies new processes controlling micronutrient availability in soil, sedimentary, and aquatic ecosystems, and points toward a mechanism for trace element mobilization during diagenesis and enrichment in geologic fluids.

Research Organization:
Advanced Photon Source (APS), Argonne National Laboratory (ANL), Argonne, IL (US)
Sponsoring Organization:
NSFOTHER
OSTI ID:
1027145
Journal Information:
Geology, Journal Name: Geology Journal Issue: 11 Vol. 39; ISSN 0091-7613; ISSN GLGYBA
Country of Publication:
United States
Language:
ENGLISH

Similar Records

Controls on Fe(II)-Activated Trace Element Release from Goethite and Hematite
Journal Article · Mon Mar 26 00:00:00 EDT 2012 · Environ. Sci. Technol. · OSTI ID:1035380

Influence of Oxalate on Ni Fate during Fe(II)-Catalyzed Recrystallization of Hematite and Goethite
Journal Article · Mon May 28 00:00:00 EDT 2018 · Environmental Science and Technology · OSTI ID:1459013

Effect of Aqueous Fe(II) on Arsenate Sorption on Goethite and Hematite
Journal Article · Wed Nov 16 23:00:00 EST 2011 · Environmental Science and Technology · OSTI ID:1027659