skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Continuum limit physics from 2+1 flavor domain wall QCD

Journal Article · · Physical Review. D, Particles, Fields, Gravitation and Cosmology

We present physical results obtained from simulations using 2+1 flavors of domain wall quarks and the Iwasaki gauge action at two values of the lattice spacing a, [a{sup -1} = 1.73(3) GeV and a{sup -1} = 2.28(3) GeV]. On the coarser lattice, with 24{sup 3} x 64 x 16 points (where the 16 corresponds to L{sub s}, the extent of the 5th dimension inherent in the domain wall fermion formulation of QCD), the analysis of C. Allton et al. Phys. Rev. D 78 is extended to approximately twice the number of configurations. The ensembles on the finer 32{sup 3} x 64 x 16 lattice are new. We explain in detail how we use lattice data obtained at several values of the lattice spacing and for a range of quark masses in combined continuum-chiral fits in order to obtain results in the continuum limit and at physical quark masses. We implement this procedure for our data at two lattice spacings and with unitary pion masses in the approximate range 290-420 MeV (225-420 MeV for partially quenched pions). We use the masses of the {pi} and K mesons and the {Omega} baryon to determine the physical quark masses and the values of the lattice spacing. While our data in the mass ranges above are consistent with the predictions of next-to-leading order SU(2) chiral perturbation theory, they are also consistent with a simple analytic ansatz leading to an inherent uncertainty in how best to perform the chiral extrapolation that we are reluctant to reduce with model-dependent assumptions about higher order corrections. In some cases, particularly for f{sub {pi}}, the pion leptonic decay constant, the uncertainty in the chiral extrapolation dominates the systematic error. Our main results include f{sub {pi}} = 124(2){sub stat}(5){sub syst} MeV, f{sub K}/f{sub {pi}} = 1.204(7)(25) where f{sub K} is the kaon decay constant, m{sub s}{sup MS} (2 GeV) = (96.2 {+-} 2.7) MeV and m{sub ud}{sup MS} (2 GeV) = (3.59 {+-} 0.21) MeV (m{sub s}/m{sub ud} = 26.8 {+-} 1.4) where m{sub s} and m{sub ud} are the mass of the strange quark and the average of the up and down quark masses, respectively, [{Sigma}{sup MS} (2 GeV)]{sup 1/3} = 256(6) MeV, where {Sigma} is the chiral condensate, the Sommer scale r{sub 0} = 0.487(9) fm and r{sub 1} = 0.333(9) fm.

Research Organization:
Brookhaven National Lab. (BNL), Upton, NY (United States). RIKEN Research Center
Sponsoring Organization:
DOE - OFFICE OF SCIENCE
DOE Contract Number:
DE-AC02-98CH10886
OSTI ID:
1025474
Report Number(s):
BNL-95358-2011-JA; PRVDAQ; R&D Project: PO-3; TRN: US1104903
Journal Information:
Physical Review. D, Particles, Fields, Gravitation and Cosmology, Vol. 83, Issue 7; ISSN 1550-7998
Country of Publication:
United States
Language:
English

Similar Records

Physical results from 2+1 flavor domain wall QCD
Conference · Mon Jul 14 00:00:00 EDT 2008 · OSTI ID:1025474

Physical results from 2+1 flavor domain wall QCD and SU(2) chiral perturbation theory
Journal Article · Mon Dec 01 00:00:00 EST 2008 · Physical Review. D, Particles Fields · OSTI ID:1025474

2 + 1 flavor lattice QCD toward the physical point
Journal Article · Thu Feb 05 00:00:00 EST 2009 · Physical Review. D, Particles, Fields, Gravitation and Cosmology · OSTI ID:1025474