skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Kinetics and Mechanism of Hydrogen-Atom Abstraction from Rhodium Hydrides by Alkyl Radicals in Aqueous Solutions

Journal Article · · Chemistry--A European Journal

The kinetics of the reaction of benzyl radicals with [L{sup 1}(H{sub 2}O)RhH{l_brace}D{r_brace}]{sup 2+} (L{sup 1}=1,4,8,11-tetraazacyclotetradecane) were studied directly by laser-flash photolysis. The rate constants for the two isotopologues, k=(9.3 {+-} 0.6) x 10{sup 7} M{sup -1} s{sup -1} (H) and (6.2 {+-} 0.3) x 10{sup 7} M{sup -1} s{sup -1} (D), lead to a kinetic isotope effect k{sub H}/k{sub D}=1.5 {+-} 0.1. The same value was obtained from the relative yields of PhCH{sub 3} and PhCH{sub 2}D in a reaction of benzyl radicals with a mixture of rhodium hydride and deuteride. Similarly, the reaction of methyl radicals with {l_brace}[L{sup 1}(H{sub 2}O)RhH]{sup 2+} + [L{sup 1}(H{sub 2}O)RhD]{sup 2+}{r_brace} produced a mixture of CH{sub 4} and CH{sub 3}D that yielded k{sub H}/k{sub D}=1.42 {+-} 0.07. The observed small normal isotope effects in both reactions are consistent with reduced sensitivity to isotopic substitution in very fast hydrogen-atom abstraction reactions. These data disprove a literature report claiming much slower kinetics and an inverse kinetic isotope effect for the reaction of methyl radicals with hydrides of L{sup 1}Rh.

Research Organization:
Ames Lab., Ames, IA (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
DE-AC02-07CH11358
OSTI ID:
1025116
Report Number(s):
IS-J 7592; TRN: US201120%%305
Journal Information:
Chemistry--A European Journal, Vol. 17, Issue 16
Country of Publication:
United States
Language:
English