Multiple-Filled Skutterudites: High Thermoelectric Figure of Merit through Separately Optimizing Electrical and Thermal Transports
Journal Article
·
· Journal of the American Chemical Society
OSTI ID:1024684
- Chinese Academy of Sciences
- General Motors Corporation
- ORNL
- GM R&D and Planning, Warren, Michigan
- General Motors Corporation-R&D
Skutterudites CoSb{sub 3} with multiple cofillers Ba, La, and Yb were synthesized and very high thermoelectric figure of merit ZT = 1.7 at 850 K was realized. X-ray diffraction of the densified multiple-filled bulk samples reveals all samples are phase pure. High-resolution scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDS) analysis confirm that multiple guest fillers occupy the nanoscale-cages in the skutterudites. The fillers are further shown to be uniformly distributed and the Co-Sb skutterudite framework is virtually unperturbed from atomic scale to a few micrometers. Our results firmly show that high power factors can be realized by adjusting the total filling fraction of fillers with different charge states to reach the optimum carrier density, at the same time, lattice thermal conductivity can also be significantly reduced, to values near the glass limit of these materials, through combining filler species of different rattling frequencies to achieve broad-frequency phonon scattering. Therefore, partially filled skutterudites with multiple fillers of different chemical nature render unique structural characteristics for optimizing electrical and thermal transports in a relatively independent way, leading to continually enhanced ZT values from single- to double-, and finally to multiple-filled skutterudites. The idea of combining multiple fillers with different charge states and rattling frequencies for performance optimization is also expected to be valid for other caged TE compounds.
- Research Organization:
- Oak Ridge National Laboratory (ORNL); High Temperature Materials Laboratory; Shared Research Equipment Collaborative Research Center
- Sponsoring Organization:
- SC USDOE - Office of Science (SC)
- DOE Contract Number:
- AC05-00OR22725
- OSTI ID:
- 1024684
- Journal Information:
- Journal of the American Chemical Society, Journal Name: Journal of the American Chemical Society Journal Issue: 20 Vol. 133; ISSN JACSAT; ISSN 0002-7863
- Country of Publication:
- United States
- Language:
- English
Similar Records
Thermoelectric properties of DC-sputtered filled skutterudite thin film
p-Type skutterudites RxMyFe3CoSb12 (R, M = Ba, Ce, Nd, and Yb): Effectiveness of double-filing for the lattice thermal conductivity reduction
Filled skutterudite antimonides: Validation of the electron-crystal phonon-glass approach to new thermoelectric materials
Journal Article
·
Sat Mar 28 00:00:00 EDT 2015
· Journal of Applied Physics
·
OSTI ID:22399355
p-Type skutterudites RxMyFe3CoSb12 (R, M = Ba, Ce, Nd, and Yb): Effectiveness of double-filing for the lattice thermal conductivity reduction
Journal Article
·
· Intermetallics
·
OSTI ID:1065639
Filled skutterudite antimonides: Validation of the electron-crystal phonon-glass approach to new thermoelectric materials
Conference
·
Tue Jul 01 00:00:00 EDT 1997
·
OSTI ID:20014259