skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Self-Assembly Strategies for Integrating Light Harvesting and Charge Separation in Artificial Photosynthetic Systems

Journal Article · · Accounts Chem. Res.
DOI:https://doi.org/10.1021/ar9001735· OSTI ID:1023644

In natural photosynthesis, organisms optimize solar energy conversion through organized assemblies of photofunctional chromophores and catalysts within proteins that provide specifically tailored environments for chemical reactions. As with their natural counterparts, artificial photosynthetic systems for practical solar fuels production must collect light energy, separate charge, and transport charge to catalytic sites where multielectron redox processes will occur. While encouraging progress has been made on each aspect of this complex problem, researchers have not yet developed self-ordering and self-assembling components and the tailored environments necessary to realize a fully-functional artificial system. Previously researchers have used complex, covalent molecular systems comprised of chromophores, electron donors, and electron acceptors to mimic both the light-harvesting and the charge separation functions of photosynthetic proteins. These systems allow for study of the dependencies of electron transfer rate constants on donor?acceptor distance and orientation, electronic interaction, and the free energy of the reaction. The most useful and informative systems are those in which structural constraints control both the distance and the orientation between the electron donors and acceptors. Self-assembly provides a facile means for organizing large numbers of molecules into supramolecular structures that can bridge length scales from nanometers to macroscopic dimensions. The resulting structures must provide pathways for migration of light excitation energy among antenna chromophores, and from antennas to reaction centers. They also must incorporate charge conduits, that is, molecular 'wires' that can efficiently move electrons and holes between reaction centers and catalytic sites. The central scientific challenge is to develop small, functional building blocks with a minimum number of covalent linkages, which also have the appropriate molecular recognition properties to facilitate self-assembly of complete, functional artificial photosynthetic systems. In this Account, we explore how self-assembly strategies involving ?-stacking can be used to integrate light harvesting with charge separation and transport.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Organization:
DOE - BASIC ENERGY SCIENCESINDUSTRYSTATE OF ILLINOIS
OSTI ID:
1023644
Journal Information:
Accounts Chem. Res., Vol. 42, Issue (12) ; 12, 2009; ISSN 0001-4842
Country of Publication:
United States
Language:
ENGLISH

Similar Records

Protein-Based Model for Energy Transfer between Photosynthetic Light-Harvesting Complexes Is Constructed Using a Direct Protein–Protein Conjugation Strategy
Journal Article · Thu Jul 13 00:00:00 EDT 2023 · Journal of the American Chemical Society · OSTI ID:1023644

(A Center for the Study of Early Events in Photosynthesis)
Technical Report · Tue Jan 01 00:00:00 EST 1991 · OSTI ID:1023644

Harvesting electrons and holes from photodriven symmetry-breaking charge separation within a perylenediimide photosynthetic model dimer
Journal Article · Mon Nov 20 00:00:00 EST 2023 · Proceedings of the National Academy of Sciences of the United States of America · OSTI ID:1023644

Related Subjects