skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Formation of artificially-layered thin-film compounds using pulsed-laser deposition

Technical Report ·
DOI:https://doi.org/10.2172/102249· OSTI ID:102249

Superlattice structures, consisting of SrCuO{sub 2}, (Sr,Ca)CuO{sub 2}, and BaCuO{sub 2} layers in the tetragonal, ``infinite layer`` crystal structure, have been grown by pulsed-laser deposition (PLD). Superlattice chemical modulation is observed for structures with component layers as thin as a single unit cell ({approximately}3.4 {angstrom}), indicating that unit-cell control of (Sr,Ca)CuO{sub 2} growth is possible using conventional pulsed-laser deposition over a wide oxygen pressure regime. X-ray diffraction intensity oscillations, due to the finite thickness of the film, indicate that these films are extremely flat with a thickness variation of only {approximately}20 {angstrom} over a length scale of several thousand angstroms. Using the constraint of epitaxy to grow metastable cuprates in the infinite layer structure, novel high-temperature superconducting structural families have been formed. In particular, epitaxially-stabilized SrCuO{sub 2}/BaCuO{sub 2} superlattices, grown by sequentially depositing on lattice-matched (100) SrTiO{sub 3} from BaCuO{sub 2} and SrCuO{sub 2} ablation targets in a PLD system, show metallic conductivity and superconductivity at {Tc}(onset) {approximately}70 K. These results show that pulsed-laser deposition and epitaxial stabilization have been used to effectively ``engineer`` artificially-layered thin-film materials.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
AC05-84OR21400
OSTI ID:
102249
Report Number(s):
CONF-950412-49; ON: DE95017424; TRN: 95:020509
Resource Relation:
Conference: Spring meeting of the Materials Research Society (MRS), San Francisco, CA (United States), 17-21 Apr 1995; Other Information: PBD: Apr 1995
Country of Publication:
United States
Language:
English