skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Remarkable Thermal Stability of Amorphous In-Zn-O Transparent Conductors

Journal Article · · Advanced Functional Materials

Transparent conducting oxides (TCOs) are increasingly critical components in photovoltaic cells, low-e windows, flat panel displays, electrochromic devices, and flexible electronics. The conventional TCOs, such as Sn-doped In{sub 2}O{sub 3}, are crystalline single phase materials. Here, we report on In-Zn-O (IZO), a compositionally tunable amorphous TCO with some significantly improved properties. Compositionally graded thin film samples were deposited by co-sputtering from separate In{sub 2}O{sub 3} and ZnO targets onto glass substrates at 100 C. For the metals composition range of 55-84 cation% indium, the as-deposited IZO thin films are amorphous, smooth (R{sub RMS} < 0.4 nm), conductive ({sigma} {approx} 3000 {Omega}{sup -1} {center_dot} cm{sup -1}), and transparent in the visible (T{sub Vis} > 90%). Furthermore, the amorphous IZO thin films demonstrate remarkable functional and structural stability with respect to heating up to 600 C in either air or argon. Hence, though not completely understood at present, these amorphous materials constitute a new class of fundamentally interesting and technologically important high performance transparent conductors.

Research Organization:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Organization:
USDOE Office of Solar Energy Technologies Program
DOE Contract Number:
AC36-08GO28308
OSTI ID:
1022321
Journal Information:
Advanced Functional Materials, Vol. 18, Issue 20, October 2008; ISSN 1616-301X
Country of Publication:
United States
Language:
English