skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: NIF Projects Controls and Information Systems Software Quality Assurance Plan

Abstract

Quality achievement for the National Ignition Facility (NIF) and the National Ignition Campaign (NIC) is the responsibility of the NIF Projects line organization as described in the NIF and Photon Science Directorate Quality Assurance Plan (NIF QA Plan). This Software Quality Assurance Plan (SQAP) is subordinate to the NIF QA Plan and establishes quality assurance (QA) activities for the software subsystems within Controls and Information Systems (CIS). This SQAP implements an activity level software quality assurance plan for NIF Projects as required by the LLNL Institutional Software Quality Assurance Program (ISQAP). Planned QA activities help achieve, assess, and maintain appropriate quality of software developed and/or acquired for control systems, shot data systems, laser performance modeling systems, business applications, industrial control and safety systems, and information technology systems. The objective of this SQAP is to ensure that appropriate controls are developed and implemented for management planning, work execution, and quality assessment of the CIS organization's software activities. The CIS line organization places special QA emphasis on rigorous configuration control, change management, testing, and issue tracking to help achieve its quality goals.

Authors:
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1022145
Report Number(s):
LLNL-TR-477658
TRN: US1104320
DOE Contract Number:
W-7405-ENG-48
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; ACTIVITY LEVELS; BUSINESS; CONFIGURATION CONTROL; CONTROL SYSTEMS; IGNITION; INFORMATION SYSTEMS; LASERS; LAWRENCE LIVERMORE NATIONAL LABORATORY; MANAGEMENT; PERFORMANCE; PHOTONS; PLANNING; QUALITY ASSURANCE; SAFETY; SIMULATION; TESTING; US NATIONAL IGNITION FACILITY

Citation Formats

Fishler, B. NIF Projects Controls and Information Systems Software Quality Assurance Plan. United States: N. p., 2011. Web. doi:10.2172/1022145.
Fishler, B. NIF Projects Controls and Information Systems Software Quality Assurance Plan. United States. doi:10.2172/1022145.
Fishler, B. Fri . "NIF Projects Controls and Information Systems Software Quality Assurance Plan". United States. doi:10.2172/1022145. https://www.osti.gov/servlets/purl/1022145.
@article{osti_1022145,
title = {NIF Projects Controls and Information Systems Software Quality Assurance Plan},
author = {Fishler, B},
abstractNote = {Quality achievement for the National Ignition Facility (NIF) and the National Ignition Campaign (NIC) is the responsibility of the NIF Projects line organization as described in the NIF and Photon Science Directorate Quality Assurance Plan (NIF QA Plan). This Software Quality Assurance Plan (SQAP) is subordinate to the NIF QA Plan and establishes quality assurance (QA) activities for the software subsystems within Controls and Information Systems (CIS). This SQAP implements an activity level software quality assurance plan for NIF Projects as required by the LLNL Institutional Software Quality Assurance Program (ISQAP). Planned QA activities help achieve, assess, and maintain appropriate quality of software developed and/or acquired for control systems, shot data systems, laser performance modeling systems, business applications, industrial control and safety systems, and information technology systems. The objective of this SQAP is to ensure that appropriate controls are developed and implemented for management planning, work execution, and quality assessment of the CIS organization's software activities. The CIS line organization places special QA emphasis on rigorous configuration control, change management, testing, and issue tracking to help achieve its quality goals.},
doi = {10.2172/1022145},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Mar 18 00:00:00 EDT 2011},
month = {Fri Mar 18 00:00:00 EDT 2011}
}

Technical Report:

Save / Share:
  • In May of 1994, Lockheed Idaho Technologies Company (LITCO) in Idaho Falls, Idaho and subcontractors developed the System Cost Model (SCM) application. The SCM estimates life-cycle costs of the entire US Department of Energy (DOE) complex for designing; constructing; operating; and decommissioning treatment, storage, and disposal (TSD) facilities for mixed low-level, low-level, transuranic, and mixed transuranic waste. The SCM uses parametric cost functions to estimate life-cycle costs for various treatment, storage, and disposal modules which reflect planned and existing facilities at DOE installations. In addition, SCM can model new facilities based on capacity needs over the program life cycle. Themore » SCM also provides transportation costs for truck and rail, which include transport of contact-handled, remote-handled, and alpha (transuranic) wastes. The user can provide input data (default data is included in the SCM) including the volume and nature of waste to be managed, the time period over which the waste is to be managed, and the configuration of the waste management complex (i.e., where each installation`s generated waste will be treated, stored, and disposed). Then the SCM uses parametric cost equations to estimate the costs of pre-operations (designing), construction costs, operation management, and decommissioning these waste management facilities. For the product to be effective and useful the SCM users must have a high level of confidence in the data generated by the software model. The SCM Software Quality Assurance Plan is part of the overall SCM project management effort to ensure that the SCM is maintained as a quality product and can be relied on to produce viable planning data. This document defines tasks and deliverables to ensure continued product integrity, provide increased confidence in the accuracy of the data generated, and meet the LITCO`s quality standards during the software maintenance phase. 8 refs., 1 tab.« less
  • The National Ignition Facility (NIF) is a key constituent of the Department Energy's (DOE's) Stockpile Stewardship Program. The NIF will use inertial confinement fusion (ICF) to produce ignition and energy gain in ICF targets and will perform weapons physics, weapons effects, and high-energy-density experiments in support of national security and civilian objectives. The primary mission of the NIF Project is the design and construction of the facility and equipment, acceptance testing, and activation. To accomplish this mission, the LLNL Director created the NIF Programs Directorate, and within that Directorate, the NIF Project Office to organize and manage the Project. Themore » NIF Project Office establishes this QA Program to ensure its success. This QA Program Plan (QAPP) defines and describes the program--the management system--for specifying, achieving, and assuring the quality of all NIF Project work consistent with the policies of LLNL and the NIF Programs Directorate.« less
  • This document contains a three-part addendum to the Clinch River Resource Conservation and Recovery Act (RCRA) Facility Investigation Plan. The Clinch River RCRA Facility Investigation began in 1989, as part of the comprehensive remediation of facilities on the US Department of Energy Oak Ridge Reservation (ORR). The ORR was added to the National Priorities List in December 1989. The regulatory agencies have encouraged the adoption of Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) terminology; therefore, the Clinch River activity is now referred to as the Clinch River Remedial Investigation (CRRI), not the Clinch River RCRA Facility Investigation. Part 1more » of this document is the plan for sampling and analysis (S&A) during Phase 2 of the CRRI. Part 2 is a revision of the Quality Assurance Project Plan for the CRRI, and Part 3 is a revision of the Environmental Health and Safety Plan for the CRRI. The Clinch River RI (CRRI) is designed to address the transport, fate, and distribution of waterborne contaminants (radionuclides, metals, and organic compounds) released from the DOE Oak Ridge Reservation (ORR) and to assess potential risks to human health and the environment associated with these contaminants. Primary areas of investigation are Melton Hill Reservoir, the Clinch River from Melton Hill Dam to its confluence with the Tennessee River, Poplar Creek, and Watts Bar Reservoir. The contaminants identified in the Clinch River/Watts Bar Reservoir (CR/WBR) downstream of the ORR are those associated with the water, suspended particles, deposited sediments, aquatic organisms, and wildlife feeding on aquatic organisms. The purpose of the Phase 2 S&A Plan is to describe the proposed tasks and subtasks developed to meet the primary objectives of the CRRI.« less
  • This Quality Assurance Program Plan is specific to environmental related activities within the FFTF Property Protected Area. The activities include effluent monitoring and Low Level Waste Certification.
  • The Quality Assurance Program of PGE for safety-related activities pertaining to the design, construction, and preoperational testing of nuclear power plants is presented.