Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Contributions of anharmonic phonon interactions to thermal boundary conductance.

Conference ·
OSTI ID:1020534

Continued reduction of characteristic dimensions in nanosystems has given rise to increasing importance of material interfaces on the overall system performance. With regard to thermal transport, this increases the need for a better fundamental understanding of the processes affecting interfacial thermal transport, as characterized by the thermal boundary conductance. When thermal boundary conductance is driven by phononic scattering events, accurate predictions of interfacial transport must account for anharmonic phononic coupling as this affects the thermal transmission. In this paper, a new model for phononic thermal boundary conductance is developed that takes into account anharonic coupling, or inelastic scattering events, at the interface between two materials. Previous models for thermal boundary conductance are first reviewed, including the Diffuse Mismatch Model, which only consdiers elastic phonon scattering events, and earlier attempts to account for inelastic phonon scattering, namely, the Maximum Transmission Model and the Higher Harmonic Inelastic model. A new model is derived, the Anharmonic Inelastic Model, which provides a more physical consideration of the effects of inelastic scattering on thermal boundary conductance. This is accomplished by considering specific ranges of phonon frequency interactions and phonon number density conservation. Thus, this model considers the contributions of anharmonic, inelastically scattered phonons to thermal boundary conductance. This new Anharmonic Inelastic Model shows excellent agreement between model predictions and experimental data at the Pb/diamond interface due to its ability to account for the temperature dependent changing phonon population in diamond, which can couple anharmonically with multiple phonons in Pb.

Research Organization:
Sandia National Laboratories
Sponsoring Organization:
USDOE
DOE Contract Number:
AC04-94AL85000
OSTI ID:
1020534
Report Number(s):
SAND2010-3490C
Country of Publication:
United States
Language:
English

Similar Records

The importance of anharmonicity in thermal transport across solid-solid interfaces
Journal Article · Mon Jan 06 23:00:00 EST 2014 · Journal of Applied Physics · OSTI ID:22271300

Orbitally driven giant phonon anharmonicity in SnSe
Journal Article · Mon Oct 19 00:00:00 EDT 2015 · Nature Physics · OSTI ID:1371007

Giant Anharmonic Phonon Scattering in PbTe
Journal Article · Fri Dec 31 23:00:00 EST 2010 · Nature Materials · OSTI ID:1018619