Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Crystal Structure of the Signaling Helix Coiled-coil Domain of the b1 Subunit of the Soluble guanylyl Cyclase

Journal Article · · BMC Structural Biology
The soluble guanylyl cyclase (sGC) is a heterodimeric enzyme that, upon activation by nitric oxide, stimulates the production of the second messenger cGMP. Each sGC subunit harbor four domains three of which are used for heterodimerization: H-NOXA/H-NOBA domain, coiled-coil domain (CC), and catalytic guanylyl cyclase domain. The CC domain has previously been postulated to be part of a larger CC family termed the signaling helix (S-helix) family. Homodimers of sGC have also been observed but are not functionally active yet are likely transient awaiting their intended heterodimeric partner. To investigate the structure of the CC S-helix region, we crystallized and determined the structure of the CC domain of the sGC{beta}1 subunit comprising residues 348-409. The crystal structure was refined to 2.15 {angstrom} resolution. The CC structure of sGC{beta}1 revealed a tetrameric arrangement comprised of a dimer of CC dimers. Each monomer is comprised of a long a-helix, a turn near residue P399, and a short second a-helix. The CC structure also offers insights as to how sGC homodimers are not as stable as (functionally) active heterodimers via a possible role for inter-helix salt-bridge formation. The structure also yielded insights into the residues involved in dimerization. In addition, the CC region is also known to harbor a number of congenital and man-made mutations in both membrane and soluble guanylyl cyclases and those function-affecting mutations have been mapped onto the CC structure. This mutant analysis indicated an importance for not only certain dimerization residue positions, but also an important role for other faces of the CC dimer which might perhaps interact with adjacent domains. Our results also extend beyond guanylyl cyclases as the CC structure is, to our knowledge, the first S-helix structure and serves as a model for all S-helix containing family members.
Research Organization:
Brookhaven National Laboratory (BNL) National Synchrotron Light Source
Sponsoring Organization:
DOE - OFFICE OF SCIENCE
DOE Contract Number:
AC02-98CH10886
OSTI ID:
1020093
Report Number(s):
BNL--95942-2011-JA
Journal Information:
BMC Structural Biology, Journal Name: BMC Structural Biology Journal Issue: 1 Vol. 10; ISSN 1472-6807
Country of Publication:
United States
Language:
English