Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Structure, Mechanism, and Substrate Profile for Sco3058: The Closest Bacterial Homologue to Human Renal Dipeptidase

Journal Article · · Biochemistry
DOI:https://doi.org/10.1021/bi901935y· OSTI ID:1019871
Human renal dipeptidase, an enzyme associated with glutathione metabolism and the hydrolysis of {beta}-lactams, is similar in sequence to a cluster of 400 microbial proteins currently annotated as nonspecific dipeptidases within the amidohydrolase superfamily. The closest homologue to the human renal dipeptidase from a fully sequenced microbe is Sco3058 from Streptomyces coelicolor. Dipeptide substrates of Sco3058 were identified by screening a comprehensive series of L-Xaa-L-Xaa, L-Xaa-D-Xaa, and D-Xaa-L-Xaa dipeptide libraries. The substrate specificity profile shows that Sco3058 hydrolyzes a broad range of dipeptides with a marked preference for an l-amino acid at the N-terminus and a d-amino acid at the C-terminus. The best substrate identified was L-Arg-D-Asp (k{sub cat}/K{sub m} = 7.6 x 10{sup 5} M{sup -1} s{sup -1}). The three-dimensional structure of Sco3058 was determined in the absence and presence of the inhibitors citrate and a phosphinate mimic of L-Ala-D-Asp. The enzyme folds as a ({beta}/{alpha}){sub 8} barrel, and two zinc ions are bound in the active site. Site-directed mutagenesis was used to probe the importance of specific residues that have direct interactions with the substrate analogues in the active site (Asp-22, His-150, Arg-223, and Asp-320). The solvent viscosity and kinetic effects of D{sub 2}O indicate that substrate binding is relatively sticky and that proton transfers do not occurr during the rate-limiting step. A bell-shaped pH-rate profile for k{sub cat} and k{sub cat}/K{sub m} indicated that one group needs to be deprotonated and a second group must be protonated for optimal turnover. Computational docking of high-energy intermediate forms of L/D-Ala-L/D-Ala to the three-dimensional structure of Sco3058 identified the structural determinants for the stereochemical preferences for substrate binding and turnover.
Research Organization:
Brookhaven National Laboratory (BNL) National Synchrotron Light Source
Sponsoring Organization:
DOE - OFFICE OF SCIENCE
DOE Contract Number:
AC02-98CH10886
OSTI ID:
1019871
Report Number(s):
BNL--95717-2011-JA
Journal Information:
Biochemistry, Journal Name: Biochemistry Journal Issue: 3 Vol. 49; ISSN 0006-2960
Country of Publication:
United States
Language:
English