Energy-Efficient, High-Color-Rendering LED Lamps Using Oxyfluoride and Fluoride Phosphors
LED lamps using phosphor downconversion can be designed to replace incandescent or halogen sources with a 'warm-white' correlated color temperature (CCT) of 2700-3200 K and a color rendering index (CRI) greater than 90. However, these lamps have efficacies of {approx}70% of standard 'cool-white' LED packages (CCT = 4500-6000 K; CRI = 75-80). In this report, we describe structural and luminescence properties of fluoride and oxyfluoride phosphors, specifically a (Sr,Ca){sub 3}(Al,Si)O{sub 4}(F,O):Ce{sup 3+} yellow-green phosphor and a K{sub 2}TiF{sub 6}:Mn{sup 4+} red phosphor, that can reduce this gap and therefore meet the spectral and efficiency requirements for high-efficacy LED lighting. LED lamps with a warm-white color temperature (3088 K), high CRI (90), and an efficacy of {approx}82 lm/W are demonstrated using these phosphors. This efficacy is {approx}85% of comparable cool-white lamps using typical Y{sub 3}Al{sub 5}O{sub 12}:Ce{sup 3+}-based phosphors, significantly reducing the efficacy gap between warm-white and cool-white LED lamps that use phosphor downconversion.
- Research Organization:
- Brookhaven National Laboratory (BNL) National Synchrotron Light Source
- Sponsoring Organization:
- DOE - OFFICE OF SCIENCE
- DOE Contract Number:
- AC02-98CH10886
- OSTI ID:
- 1019735
- Report Number(s):
- BNL--95581-2011-JA
- Journal Information:
- Chemistry of Materials, Journal Name: Chemistry of Materials Journal Issue: 13 Vol. 22; ISSN CMATEX; ISSN 0897-4756
- Country of Publication:
- United States
- Language:
- English
Similar Records
Materials and Designs for High-Efficacy LED Light Engines
Efficient White SSL Component for General Illumination